7.8 CVE-2023-52885

Patch
 

In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix UAF in svc_tcp_listen_data_ready() After the listener svc_sock is freed, and before invoking svc_tcp_accept() for the established child sock, there is a window that the newsock retaining a freed listener svc_sock in sk_user_data which cloning from parent. In the race window, if data is received on the newsock, we will observe use-after-free report in svc_tcp_listen_data_ready(). Reproduce by two tasks: 1. while :; do rpc.nfsd 0 ; rpc.nfsd; done 2. while :; do echo "" | ncat -4 127.0.0.1 2049 ; done KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] Read of size 8 at addr ffff888139d96228 by task nc/102553 CPU: 7 PID: 102553 Comm: nc Not tainted 6.3.0+ #18 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: <IRQ> dump_stack_lvl+0x33/0x50 print_address_description.constprop.0+0x27/0x310 print_report+0x3e/0x70 kasan_report+0xae/0xe0 svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] tcp_data_queue+0x9f4/0x20e0 tcp_rcv_established+0x666/0x1f60 tcp_v4_do_rcv+0x51c/0x850 tcp_v4_rcv+0x23fc/0x2e80 ip_protocol_deliver_rcu+0x62/0x300 ip_local_deliver_finish+0x267/0x350 ip_local_deliver+0x18b/0x2d0 ip_rcv+0x2fb/0x370 __netif_receive_skb_one_core+0x166/0x1b0 process_backlog+0x24c/0x5e0 __napi_poll+0xa2/0x500 net_rx_action+0x854/0xc90 __do_softirq+0x1bb/0x5de do_softirq+0xcb/0x100 </IRQ> <TASK> ... </TASK> Allocated by task 102371: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7b/0x90 svc_setup_socket+0x52/0x4f0 [sunrpc] svc_addsock+0x20d/0x400 [sunrpc] __write_ports_addfd+0x209/0x390 [nfsd] write_ports+0x239/0x2c0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 102551: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x50 __kasan_slab_free+0x106/0x190 __kmem_cache_free+0x133/0x270 svc_xprt_free+0x1e2/0x350 [sunrpc] svc_xprt_destroy_all+0x25a/0x440 [sunrpc] nfsd_put+0x125/0x240 [nfsd] nfsd_svc+0x2cb/0x3c0 [nfsd] write_threads+0x1ac/0x2a0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Fix the UAF by simply doing nothing in svc_tcp_listen_data_ready() if state != TCP_LISTEN, that will avoid dereferencing svsk for all child socket.
https://nvd.nist.gov/vuln/detail/CVE-2023-52885

Categories

CWE-416 : Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. If the product accesses a previously-freed pointer, then it means that a separate weakness or error already occurred previously, such as a race condition, an unexpected or poorly handled error condition, confusion over which part of the program is responsible for freeing the memory, performing the free too soon, etc. a pointer that no longer points to valid memory, often after it has been freed commonly used acronym for Use After Free Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues. Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.) Use tools that are integrated duringcompilation to insert runtime error-checking mechanismsrelated to memory safety errors, such as AddressSanitizer(ASan) for C/C++ [REF-1518]. Choose a language that provides automatic memory management. When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Chain: an operating system kernel has insufficent resource locking (CWE-413) leading to a use after free (CWE-416). Chain: two threads in a web browser use the same resource (CWE-366), but one of those threads can destroy the resource before the other has completed (CWE-416). Chain: mobile platform race condition (CWE-362) leading to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Use-after-free triggered by closing a connection while data is still being transmitted. Improper allocation for invalid data leads to use-after-free. certificate with a large number of Subject Alternate Names not properly handled in realloc, leading to use-after-free Timers are not disabled when a related object is deleted Access to a "dead" object that is being cleaned up object is deleted even with a non-zero reference count, and later accessed use-after-free involving request containing an invalid version number unload of an object that is currently being accessed by other functionality incorrectly tracking a reference count leads to use-after-free use-after-free related to use of uninitialized memory HTML document with incorrectly-nested tags Use after free in ActiveX object by providing a malformed argument to a method use-after-free by disconnecting during data transfer, or a message containing incorrect data types disconnect during a large data transfer causes incorrect reference count, leading to use-after-free use-after-free found by fuzzing Chain: race condition (CWE-362) from improper handling of a page transition in web client while an applet is loading (CWE-368) leads to use after free (CWE-416) realloc generates new buffer and pointer, but previous pointer is still retained, leading to use after free Use-after-free in web browser, probably resultant from not initializing memory. use-after-free when one thread accessed memory that was freed by another thread assignment of malformed values to certain properties triggers use after free mail server does not properly handle a long header. chain: integer overflow leads to use-after-free freed pointer dereference Chain: A multi-threaded race condition (CWE-367) allows attackers to cause two threads to process the same RPC request, which causes a use-after-free (CWE-416) in one thread

References


 

CPE

cpe start end
Configuration 1
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 4.8 < 4.14.322
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 4.15 < 4.19.291
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 4.20 < 5.4.251
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 5.5 < 5.10.188
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 5.11 < 5.15.121
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 5.16 < 6.1.39
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* >= 6.2 < 6.4.4


REMEDIATION


Patch

Url
https://git.kernel.org/stable/c/42725e5c1b181b757ba11d804443922982334d9b
https://git.kernel.org/stable/c/7e1f989055622fd086c5dfb291fc72adf5660b6f
https://git.kernel.org/stable/c/c7b8c2d06e437639694abe76978e915cfb73f428
https://git.kernel.org/stable/c/cd5ec3ee52ce4b7e283cc11facfa420c297c8065
https://git.kernel.org/stable/c/dfc896c4a75cb8cd7cb2dfd9b469cf1e3f004254
https://git.kernel.org/stable/c/ef047411887ff0845afd642d6a687819308e1a4e
https://git.kernel.org/stable/c/fbf4ace39b2e4f3833236afbb2336edbafd75eee
https://git.kernel.org/stable/c/fc80fc2d4e39137869da3150ee169b40bf879287
https://git.kernel.org/stable/c/42725e5c1b181b757ba11d804443922982334d9b
https://git.kernel.org/stable/c/7e1f989055622fd086c5dfb291fc72adf5660b6f
https://git.kernel.org/stable/c/c7b8c2d06e437639694abe76978e915cfb73f428
https://git.kernel.org/stable/c/cd5ec3ee52ce4b7e283cc11facfa420c297c8065
https://git.kernel.org/stable/c/dfc896c4a75cb8cd7cb2dfd9b469cf1e3f004254
https://git.kernel.org/stable/c/ef047411887ff0845afd642d6a687819308e1a4e
https://git.kernel.org/stable/c/fbf4ace39b2e4f3833236afbb2336edbafd75eee
https://git.kernel.org/stable/c/fc80fc2d4e39137869da3150ee169b40bf879287


EXPLOITS


Exploit-db.com

id description date
No known exploits

POC Github

Url
No known exploits

Other Nist (github, ...)

Url
No known exploits


CAPEC


Common Attack Pattern Enumerations and Classifications

id description severity
No entry