7.8 CVE-2024-49950
Patch
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix uaf in l2cap_connect
[Syzbot reported]
BUG: KASAN: slab-use-after-free in l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949
Read of size 8 at addr ffff8880241e9800 by task kworker/u9:0/54
CPU: 0 UID: 0 PID: 54 Comm: kworker/u9:0 Not tainted 6.11.0-rc6-syzkaller-00268-g788220eee30d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
Workqueue: hci2 hci_rx_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:119
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
l2cap_connect.constprop.0+0x10d8/0x1270 net/bluetooth/l2cap_core.c:3949
l2cap_connect_req net/bluetooth/l2cap_core.c:4080 [inline]
l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:4772 [inline]
l2cap_sig_channel net/bluetooth/l2cap_core.c:5543 [inline]
l2cap_recv_frame+0xf0b/0x8eb0 net/bluetooth/l2cap_core.c:6825
l2cap_recv_acldata+0x9b4/0xb70 net/bluetooth/l2cap_core.c:7514
hci_acldata_packet net/bluetooth/hci_core.c:3791 [inline]
hci_rx_work+0xaab/0x1610 net/bluetooth/hci_core.c:4028
process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231
process_scheduled_works kernel/workqueue.c:3312 [inline]
worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
...
Freed by task 5245:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:579
poison_slab_object+0xf7/0x160 mm/kasan/common.c:240
__kasan_slab_free+0x32/0x50 mm/kasan/common.c:256
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2256 [inline]
slab_free mm/slub.c:4477 [inline]
kfree+0x12a/0x3b0 mm/slub.c:4598
l2cap_conn_free net/bluetooth/l2cap_core.c:1810 [inline]
kref_put include/linux/kref.h:65 [inline]
l2cap_conn_put net/bluetooth/l2cap_core.c:1822 [inline]
l2cap_conn_del+0x59d/0x730 net/bluetooth/l2cap_core.c:1802
l2cap_connect_cfm+0x9e6/0xf80 net/bluetooth/l2cap_core.c:7241
hci_connect_cfm include/net/bluetooth/hci_core.h:1960 [inline]
hci_conn_failed+0x1c3/0x370 net/bluetooth/hci_conn.c:1265
hci_abort_conn_sync+0x75a/0xb50 net/bluetooth/hci_sync.c:5583
abort_conn_sync+0x197/0x360 net/bluetooth/hci_conn.c:2917
hci_cmd_sync_work+0x1a4/0x410 net/bluetooth/hci_sync.c:328
process_one_work+0x9c5/0x1b40 kernel/workqueue.c:3231
process_scheduled_works kernel/workqueue.c:3312 [inline]
worker_thread+0x6c8/0xed0 kernel/workqueue.c:3389
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
https://nvd.nist.gov/vuln/detail/CVE-2024-49950
Categories
CWE-416 : Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. If the product accesses a previously-freed pointer, then it means that a separate weakness or error already occurred previously, such as a race condition, an unexpected or poorly handled error condition, confusion over which part of the program is responsible for freeing the memory, performing the free too soon, etc. a pointer that no longer points to valid memory, often after it has been freed commonly used acronym for Use After Free Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues. Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.) Use tools that are integrated duringcompilation to insert runtime error-checking mechanismsrelated to memory safety errors, such as AddressSanitizer(ASan) for C/C++ [REF-1518]. Choose a language that provides automatic memory management. When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Chain: an operating system kernel has insufficent resource locking (CWE-413) leading to a use after free (CWE-416). Chain: two threads in a web browser use the same resource (CWE-366), but one of those threads can destroy the resource before the other has completed (CWE-416). Chain: mobile platform race condition (CWE-362) leading to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Use-after-free triggered by closing a connection while data is still being transmitted. Improper allocation for invalid data leads to use-after-free. certificate with a large number of Subject Alternate Names not properly handled in realloc, leading to use-after-free Timers are not disabled when a related object is deleted Access to a "dead" object that is being cleaned up object is deleted even with a non-zero reference count, and later accessed use-after-free involving request containing an invalid version number unload of an object that is currently being accessed by other functionality incorrectly tracking a reference count leads to use-after-free use-after-free related to use of uninitialized memory HTML document with incorrectly-nested tags Use after free in ActiveX object by providing a malformed argument to a method use-after-free by disconnecting during data transfer, or a message containing incorrect data types disconnect during a large data transfer causes incorrect reference count, leading to use-after-free use-after-free found by fuzzing Chain: race condition (CWE-362) from improper handling of a page transition in web client while an applet is loading (CWE-368) leads to use after free (CWE-416) realloc generates new buffer and pointer, but previous pointer is still retained, leading to use after free Use-after-free in web browser, probably resultant from not initializing memory. use-after-free when one thread accessed memory that was freed by another thread assignment of malformed values to certain properties triggers use after free mail server does not properly handle a long header. chain: integer overflow leads to use-after-free freed pointer dereference Chain: A multi-threaded race condition (CWE-367) allows attackers to cause two threads to process the same RPC request, which causes a use-after-free (CWE-416) in one thread
References
416baaa9-dc9f-4396-8d5f-8c081fb06d67 Patch
af854a3a-2127-422b-91ae-364da2661108 Patch
CPE
| cpe | start | end |
|---|---|---|
| Configuration 1 | ||
| cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | >= 3.8 | < 6.6.55 |
| cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | >= 6.7 | < 6.10.14 |
| cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | >= 6.11 | < 6.11.3 |
REMEDIATION
Patch
EXPLOITS
Exploit-db.com
| id | description | date | |
|---|---|---|---|
| No known exploits | |||
POC Github
| Url |
|---|
| No known exploits |
Other Nist (github, ...)
| Url |
|---|
| No known exploits |
CAPEC
Common Attack Pattern Enumerations and Classifications
| id | description | severity |
|---|---|---|
| No entry | ||
Cybersecurity needs ?
Strengthen software security from the outset with our DevSecOps expertise
Integrate security right from the start of the software development cycle for more robust applications and greater customer confidence.
Our team of DevSecOps experts can help you secure your APIs, data pipelines, CI/CD chains, Docker containers and Kubernetes deployments.
