7.8 CVE-2024-56653
Patch
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btmtk: avoid UAF in btmtk_process_coredump
hci_devcd_append may lead to the release of the skb, so it cannot be
accessed once it is called.
==================================================================
BUG: KASAN: slab-use-after-free in btmtk_process_coredump+0x2a7/0x2d0 [btmtk]
Read of size 4 at addr ffff888033cfabb0 by task kworker/0:3/82
CPU: 0 PID: 82 Comm: kworker/0:3 Tainted: G U 6.6.40-lockdep-03464-g1d8b4eb3060e #1 b0b3c1cc0c842735643fb411799d97921d1f688c
Hardware name: Google Yaviks_Ufs/Yaviks_Ufs, BIOS Google_Yaviks_Ufs.15217.552.0 05/07/2024
Workqueue: events btusb_rx_work [btusb]
Call Trace:
<TASK>
dump_stack_lvl+0xfd/0x150
print_report+0x131/0x780
kasan_report+0x177/0x1c0
btmtk_process_coredump+0x2a7/0x2d0 [btmtk 03edd567dd71a65958807c95a65db31d433e1d01]
btusb_recv_acl_mtk+0x11c/0x1a0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
btusb_rx_work+0x9e/0xe0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 82:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
__kasan_slab_alloc+0x4e/0x60
kmem_cache_alloc+0x19f/0x360
skb_clone+0x132/0xf70
btusb_recv_acl_mtk+0x104/0x1a0 [btusb]
btusb_rx_work+0x9e/0xe0 [btusb]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
Freed by task 1733:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
kasan_save_free_info+0x28/0xb0
____kasan_slab_free+0xfd/0x170
kmem_cache_free+0x183/0x3f0
hci_devcd_rx+0x91a/0x2060 [bluetooth]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
The buggy address belongs to the object at ffff888033cfab40
which belongs to the cache skbuff_head_cache of size 232
The buggy address is located 112 bytes inside of
freed 232-byte region [ffff888033cfab40, ffff888033cfac28)
The buggy address belongs to the physical page:
page:00000000a174ba93 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x33cfa
head:00000000a174ba93 order:1 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x4000000000000840(slab|head|zone=1)
page_type: 0xffffffff()
raw: 4000000000000840 ffff888100848a00 0000000000000000 0000000000000001
raw: 0000000000000000 0000000080190019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888033cfaa80: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888033cfab00: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
>ffff888033cfab80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888033cfac00: fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc
ffff888033cfac80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Check if we need to call hci_devcd_complete before calling
hci_devcd_append. That requires that we check data->cd_info.cnt >=
MTK_COREDUMP_NUM instead of data->cd_info.cnt > MTK_COREDUMP_NUM, as we
increment data->cd_info.cnt only once the call to hci_devcd_append
succeeds.
https://nvd.nist.gov/vuln/detail/CVE-2024-56653
Categories
CWE-416 : Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. If the product accesses a previously-freed pointer, then it means that a separate weakness or error already occurred previously, such as a race condition, an unexpected or poorly handled error condition, confusion over which part of the program is responsible for freeing the memory, performing the free too soon, etc. a pointer that no longer points to valid memory, often after it has been freed commonly used acronym for Use After Free Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues. Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.) Choose a language that provides automatic memory management. When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Chain: an operating system kernel has insufficent resource locking (CWE-413) leading to a use after free (CWE-416). Chain: two threads in a web browser use the same resource (CWE-366), but one of those threads can destroy the resource before the other has completed (CWE-416). Chain: mobile platform race condition (CWE-362) leading to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Chain: race condition (CWE-362) leads to use-after-free (CWE-416), as exploited in the wild per CISA KEV. Use-after-free triggered by closing a connection while data is still being transmitted. Improper allocation for invalid data leads to use-after-free. certificate with a large number of Subject Alternate Names not properly handled in realloc, leading to use-after-free Timers are not disabled when a related object is deleted Access to a "dead" object that is being cleaned up object is deleted even with a non-zero reference count, and later accessed use-after-free involving request containing an invalid version number unload of an object that is currently being accessed by other functionality incorrectly tracking a reference count leads to use-after-free use-after-free related to use of uninitialized memory HTML document with incorrectly-nested tags Use after free in ActiveX object by providing a malformed argument to a method use-after-free by disconnecting during data transfer, or a message containing incorrect data types disconnect during a large data transfer causes incorrect reference count, leading to use-after-free use-after-free found by fuzzing Chain: race condition (CWE-362) from improper handling of a page transition in web client while an applet is loading (CWE-368) leads to use after free (CWE-416) realloc generates new buffer and pointer, but previous pointer is still retained, leading to use after free Use-after-free in web browser, probably resultant from not initializing memory. use-after-free when one thread accessed memory that was freed by another thread assignment of malformed values to certain properties triggers use after free mail server does not properly handle a long header. chain: integer overflow leads to use-after-free freed pointer dereference Chain: A multi-threaded race condition (CWE-367) allows attackers to cause two threads to process the same RPC request, which causes a use-after-free (CWE-416) in one thread
References
416baaa9-dc9f-4396-8d5f-8c081fb06d67 Patch
CPE
cpe | start | end |
---|---|---|
Configuration 1 | ||
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | >= 6.6 | < 6.6.67 |
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | >= 6.7 | < 6.12.6 |
cpe:2.3:o:linux:linux_kernel:6.13:rc1:*:*:*:*:*:* | ||
cpe:2.3:o:linux:linux_kernel:6.13:rc2:*:*:*:*:*:* |
REMEDIATION
Patch
EXPLOITS
Exploit-db.com
id | description | date | |
---|---|---|---|
No known exploits |
POC Github
Url |
---|
No known exploits |
Other Nist (github, ...)
Url |
---|
No known exploits |
CAPEC
Common Attack Pattern Enumerations and Classifications
id | description | severity |
---|---|---|
No entry |
Cybersecurity needs ?
Strengthen software security from the outset with our DevSecOps expertise
Integrate security right from the start of the software development cycle for more robust applications and greater customer confidence.
Our team of DevSecOps experts can help you secure your APIs, data pipelines, CI/CD chains, Docker containers and Kubernetes deployments.