6.7 CVE-2025-1976

CISA Kev Catalog RCE Injection SQL
 

Brocade Fabric OS versions starting with 9.1.0 have root access removed, however, a local user with admin privilege can potentially execute arbitrary code with full root privileges on Fabric OS versions 9.1.0 through 9.1.1d6.
https://nvd.nist.gov/vuln/detail/CVE-2025-1976

Categories

CWE-94 : Improper Control of Generation of Code ('Code Injection')
The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment. Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.) Refactor your program so that you do not have to dynamically generate code. Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible. Use dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results. Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184). Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184). Math component in an LLM framework translates user input into a Pythonexpression that is input into the Python exec() method, allowing codeexecution - one variant of a "prompt injection" attack. Python-based library uses an LLM prompt containing user input todynamically generate code that is then fed as input into the Pythonexec() method, allowing code execution - one variant of a "promptinjection" attack. Framework for LLM applications allows eval injection via a crafted response from a hosting provider. Python compiler uses eval() to execute malicious strings as Python code. Chain: regex in EXIF processor code does not correctly determine where a string ends (CWE-625), enabling eval injection (CWE-95), as exploited in the wild per CISA KEV. "Code injection" in VPN product, as exploited in the wild per CISA KEV. Eval injection in PHP program. Eval injection in Perl program. Eval injection in Perl program using an ID that should only contain hyphens and numbers. Direct code injection into Perl eval function. Eval injection in Perl program. Direct code injection into Perl eval function. Direct code injection into Perl eval function. MFV. code injection into PHP eval statement using nested constructs that should not be nested. MFV. code injection into PHP eval statement using nested constructs that should not be nested. Code injection into Python eval statement from a field in a formatted file. Eval injection in Python program. chain: Resultant eval injection. An invalid value prevents initialization of variables, which can be modified by attacker and later injected into PHP eval statement. Perl code directly injected into CGI library file from parameters to another CGI program. Direct PHP code injection into supporting template file. Direct code injection into PHP script that can be accessed by attacker. PHP code from User-Agent HTTP header directly inserted into log file implemented as PHP script.

CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. This weakness can be detected using dynamic tools and techniques that interact with the product using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The product's operation may slow down, but it should not become unstable, crash, or generate incorrect results. Since this weakness does not typically appear frequently within a single software package, manual white box techniques may be able to provide sufficient code coverage and reduction of false positives if all potentially-vulnerable operations can be assessed within limited time constraints. If at all possible, use library calls rather than external processes to recreate the desired functionality. For any data that will be used to generate a command to be executed, keep as much of that data out of external control as possible. For example, in web applications, this may require storing the data locally in the session's state instead of sending it out to the client in a hidden form field. For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88). If the program to be executed allows arguments to be specified within an input file or from standard input, then consider using that mode to pass arguments instead of the command line. When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs. Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184). Run the code in an environment that performs automatic taint propagation and prevents any command execution that uses tainted variables, such as Perl's "-T" switch. This will force the program to perform validation steps that remove the taint, although you must be careful to correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184). Use runtime policy enforcement to create an allowlist of allowable commands, then prevent use of any command that does not appear in the allowlist. Technologies such as AppArmor are available to do this. Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth. Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations. When using PHP, configure the application so that it does not use register_globals. During implementation, develop the application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues. OS command injection in Wi-Fi router, as exploited in the wild per CISA KEV. Template functionality in network configuration management tool allows OS command injection, as exploited in the wild per CISA KEV. Chain: improper input validation (CWE-20) in username parameter, leading to OS command injection (CWE-78), as exploited in the wild per CISA KEV. Canonical example of OS command injection. CGI program does not neutralize "|" metacharacter when invoking a phonebook program. Language interpreter's mail function accepts another argument that is concatenated to a string used in a dangerous popen() call. Since there is no neutralization of this argument, both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible. Web server allows command execution using "|" (pipe) character. FTP client does not filter "|" from filenames returned by the server, allowing for OS command injection. Shell metacharacters in a filename in a ZIP archive Shell metacharacters in a telnet:// link are not properly handled when the launching application processes the link. OS command injection through environment variable. OS command injection through https:// URLs Chain: incomplete denylist for OS command injection Product allows remote users to execute arbitrary commands by creating a file whose pathname contains shell metacharacters.

References


 

CPE

cpe start end
Configuration 1
cpe:2.3:o:broadcom:fabric_operating_system:*:*:*:*:*:*:*:* >= 9.1.0 < 9.1.1d7


REMEDIATION




EXPLOITS


Exploit-db.com

id description date
No known exploits

POC Github

Url
No known exploits

Other Nist (github, ...)

Url
No known exploits


CAPEC


Common Attack Pattern Enumerations and Classifications

id description severity
242 Code Injection
High
35 Leverage Executable Code in Non-Executable Files
Very High
77 Manipulating User-Controlled Variables
Very High
108 Command Line Execution through SQL Injection
Very High
15 Command Delimiters
High
43 Exploiting Multiple Input Interpretation Layers
High
6 Argument Injection
High
88 OS Command Injection
High


MITRE


Techniques

id description
T1027.006 Obfuscated Files or Information: HTML Smuggling
T1027.009 Obfuscated Files or Information: Embedded Payloads
T1564.009 Hide Artifacts: Resource Forking
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Mitigations

id description
M1048 Browser sandboxes can be used to mitigate some of the impact of exploitation, but sandbox escapes may still exist.
M1040 On Windows 10, enable Attack Surface Reduction (ASR) rules to prevent execution of potentially obfuscated scripts.
M1013 Configure applications to use the application bundle structure which leverages the <code>/Resources</code> folder location.
© 2022 The MITRE Corporation. Esta obra se reproduce y distribuye con el permiso de The MITRE Corporation.