162 |
Manipulating Hidden Fields
An adversary exploits a weakness in the server's trust of client-side processing by modifying data on the client-side, such as price information, and then submitting this data to the server, which processes the modified data. For example, eShoplifting is a data manipulation attack against an on-line merchant during a purchasing transaction. The manipulation of price, discount or quantity fields in the transaction message allows the adversary to acquire items at a lower cost than the merchant intended. The adversary performs a normal purchasing transaction but edits hidden fields within the HTML form response that store price or other information to give themselves a better deal. The merchant then uses the modified pricing information in calculating the cost of the selected items. [Probe target web application] The adversary first probes the target web application to find all possible pages that can be visited on the website. [Find hidden fields] Once the web application has been traversed, the adversary looks for all hidden HTML fields present in the client-side. [Send modified hidden fields to server-side] Once the adversary has found hidden fields in the client-side, they will modify the values of these hidden fields one by one and then interact with the web application so that this data is sent to the server-side. The adversary observes the response from the server to determine if the values of each hidden field are being validated. [Manipulate hidden fields] Once the adversary has determined which hidden fields are not being validated by the server, they will manipulate them to change the normal behavior of the web application in a way that benefits the adversary. |
High |
202 |
Create Malicious Client
An adversary creates a client application to interface with a target service where the client violates assumptions the service makes about clients. Services that have designated client applications (as opposed to services that use general client applications, such as IMAP or POP mail servers which can interact with any IMAP or POP client) may assume that the client will follow specific procedures. |
Medium |
207 |
Removing Important Client Functionality
An adversary removes or disables functionality on the client that the server assumes to be present and trustworthy. [Probing] The adversary probes, through brute-forcing, reverse-engineering or other similar means, the functionality on the client that server assumes to be present and trustworthy. [Determine which functionality to disable or remove] The adversary tries to determine which functionality to disable or remove through reverse-engineering from the list of functionality identified in the Explore phase. [Disable or remove the critical functionality from the client code] Once the functionality has been determined, the adversary disables or removes the critical functionality from the client code to perform malicious actions that the server believes are prohibited. |
High |
208 |
Removing/short-circuiting 'Purse' logic: removing/mutating 'cash' decrements
An attacker removes or modifies the logic on a client associated with monetary calculations resulting in incorrect information being sent to the server. A server may rely on a client to correctly compute monetary information. For example, a server might supply a price for an item and then rely on the client to correctly compute the total cost of a purchase given the number of items the user is buying. If the attacker can remove or modify the logic that controls these calculations, they can return incorrect values to the server. The attacker can use this to make purchases for a fraction of the legitimate cost or otherwise avoid correct billing for activities. |
Medium |
21 |
Exploitation of Trusted Identifiers
[Survey the application for Indicators of Susceptibility] Using a variety of methods, until one is found that applies to the target, the adversary probes for cookies, session tokens, or entry points that bypass identifiers altogether. [Fetch samples] The adversary fetches many samples of identifiers. This may be through legitimate access (logging in, legitimate connections, etc.) or via systematic probing. [Impersonate] An adversary can use successful experiments or authentications to impersonate an authorized user or system or to laterally move within a system or application [Spoofing] Malicious data can be injected into the target system or into a victim user's system by an adversary. The adversary can also pose as a legitimate user to perform social engineering attacks. [Data Exfiltration] The adversary can obtain sensitive data contained within the system or application. |
High |
31 |
Accessing/Intercepting/Modifying HTTP Cookies
This attack relies on the use of HTTP Cookies to store credentials, state information and other critical data on client systems. There are several different forms of this attack. The first form of this attack involves accessing HTTP Cookies to mine for potentially sensitive data contained therein. The second form involves intercepting this data as it is transmitted from client to server. This intercepted information is then used by the adversary to impersonate the remote user/session. The third form is when the cookie's content is modified by the adversary before it is sent back to the server. Here the adversary seeks to convince the target server to operate on this falsified information. [Obtain copy of cookie] The adversary first needs to obtain a copy of the cookie. The adversary may be a legitimate end user wanting to escalate privilege, or could be somebody sniffing on a network to get a copy of HTTP cookies. [Obtain sensitive information from cookie] The adversary may be able to get sensitive information from the cookie. The web application developers may have assumed that cookies are not accessible by end users, and thus, may have put potentially sensitive information in them. [Modify cookie to subvert security controls.] The adversary may be able to modify or replace cookies to bypass security controls in the application. |
High |
383 |
Harvesting Information via API Event Monitoring
An adversary hosts an event within an application framework and then monitors the data exchanged during the course of the event for the purpose of harvesting any important data leaked during the transactions. One example could be harvesting lists of usernames or userIDs for the purpose of sending spam messages to those users. One example of this type of attack involves the adversary creating an event within the sub-application. Assume the adversary hosts a "virtual sale" of rare items. As other users enter the event, the attacker records via AiTM (CAPEC-94) proxy the user_ids and usernames of everyone who attends. The adversary would then be able to spam those users within the application using an automated script. |
Low |
384 |
Application API Message Manipulation via Man-in-the-Middle
An attacker manipulates either egress or ingress data from a client within an application framework in order to change the content of messages. Performing this attack can allow the attacker to gain unauthorized privileges within the application, or conduct attacks such as phishing, deceptive strategies to spread malware, or traditional web-application attacks. The techniques require use of specialized software that allow the attacker to perform adversary-in-the-middle (CAPEC-94) communications between the web browser and the remote system. Despite the use of AiTH software, the attack is actually directed at the server, as the client is one node in a series of content brokers that pass information along to the application framework. Additionally, it is not true "Adversary-in-the-Middle" attack at the network layer, but an application-layer attack the root cause of which is the master applications trust in the integrity of code supplied by the client. |
Low |
385 |
Transaction or Event Tampering via Application API Manipulation
An attacker hosts or joins an event or transaction within an application framework in order to change the content of messages or items that are being exchanged. Performing this attack allows the attacker to manipulate content in such a way as to produce messages or content that look authentic but may contain deceptive links, substitute one item or another, spoof an existing item and conduct a false exchange, or otherwise change the amounts or identity of what is being exchanged. The techniques require use of specialized software that allow the attacker to man-in-the-middle communications between the web browser and the remote system in order to change the content of various application elements. Often, items exchanged in game can be monetized via sales for coin, virtual dollars, etc. The purpose of the attack is for the attack to scam the victim by trapping the data packets involved the exchange and altering the integrity of the transfer process. |
Medium |
386 |
Application API Navigation Remapping
An attacker manipulates either egress or ingress data from a client within an application framework in order to change the destination and/or content of links/buttons displayed to a user within API messages. Performing this attack allows the attacker to manipulate content in such a way as to produce messages or content that looks authentic but contains links/buttons that point to an attacker controlled destination. Some applications make navigation remapping more difficult to detect because the actual HREF values of images, profile elements, and links/buttons are masked. One example would be to place an image in a user's photo gallery that when clicked upon redirected the user to an off-site location. Also, traditional web vulnerabilities (such as CSRF) can be constructed with remapped buttons or links. In some cases navigation remapping can be used for Phishing attacks or even means to artificially boost the page view, user site reputation, or click-fraud. |
Medium |
387 |
Navigation Remapping To Propagate Malicious Content
An adversary manipulates either egress or ingress data from a client within an application framework in order to change the content of messages and thereby circumvent the expected application logic. |
Medium |
388 |
Application API Button Hijacking
An attacker manipulates either egress or ingress data from a client within an application framework in order to change the destination and/or content of buttons displayed to a user within API messages. Performing this attack allows the attacker to manipulate content in such a way as to produce messages or content that looks authentic but contains buttons that point to an attacker controlled destination. |
Medium |