7.5 CVE-2026-2474
Crypt::URandom versions from 0.41 before 0.55 for Perl is vulnerable to a heap buffer overflow in the XS function crypt_urandom_getrandom().
The function does not validate that the length parameter is non-negative. If a negative value (e.g. -1) is supplied, the expression length + 1u causes an integer wraparound, resulting in a zero-byte allocation. The subsequent call to getrandom(data, length, GRND_NONBLOCK) passes the original negative value, which is implicitly converted to a large unsigned value (typically SIZE_MAX). This can result in writes beyond the allocated buffer, leading to heap memory corruption and application crash (denial of service).
In common usage, the length argument is typically hardcoded by the caller, which reduces the likelihood of attacker-controlled exploitation. Applications that pass untrusted input to this parameter may be affected.
https://nvd.nist.gov/vuln/detail/CVE-2026-2474
Categories
CWE-122 : Heap-based Buffer Overflow
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc(). Fuzz testing (fuzzing) is a powerful technique for generating large numbers of diverse inputs - either randomly or algorithmically - and dynamically invoking the code with those inputs. Even with random inputs, it is often capable of generating unexpected results such as crashes, memory corruption, or resource consumption. Fuzzing effectively produces repeatable test cases that clearly indicate bugs, which helps developers to diagnose the issues. Use tools that are integrated duringcompilation to insert runtime error-checking mechanismsrelated to memory safety errors, such as AddressSanitizer(ASan) for C/C++ [REF-1518]. Pre-design: Use a language or compiler that performs automatic bounds checking. Use an abstraction library to abstract away risky APIs. Not a complete solution. Implement and perform bounds checking on input. Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for the boundary. Use OS-level preventative functionality. This is not a complete solution, but it provides some defense in depth. Chain: Javascript engine code does not perform a length check (CWE-1284) leading to integer overflow (CWE-190) causing allocation of smaller buffer than expected (CWE-131) resulting in a heap-based buffer overflow (CWE-122) Chain: in a web browser, an unsigned 64-bit integer is forcibly cast to a 32-bit integer (CWE-681) and potentially leading to an integer overflow (CWE-190). If an integer overflow occurs, this can cause heap memory corruption (CWE-122) Chain: integer signedness error (CWE-195) passes signed comparison, leading to heap overflow (CWE-122) Chain: product does not handle when an input string is not NULL terminated (CWE-170), leading to buffer over-read (CWE-125) or heap-based buffer overflow (CWE-122). Chain: machine-learning product can have a heap-basedbuffer overflow (CWE-122) when some integer-oriented bounds arecalculated by using ceiling() and floor() on floating point values(CWE-1339) Chain: integer overflow (CWE-190) causes a negative signed value, which later bypasses a maximum-only check (CWE-839), leading to heap-based buffer overflow (CWE-122).
References
9b29abf9-4ab0-4765-b253-1875cd9b441e
AFFECTED (from MITRE)
| Vendor |
Product |
Versions |
| DDICK |
Crypt::URandom |
|
| © 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation. |
CPE
REMEDIATION
EXPLOITS
Exploit-db.com
| id |
description |
date |
|
| No known exploits |
POC Github
Other Nist (github, ...)
CAPEC
Common Attack Pattern Enumerations and Classifications
| id |
description |
severity |
| 92 |
Forced Integer Overflow
This attack forces an integer variable to go out of range. The integer variable is often used as an offset such as size of memory allocation or similarly. The attacker would typically control the value of such variable and try to get it out of range. For instance the integer in question is incremented past the maximum possible value, it may wrap to become a very small, or negative number, therefore providing a very incorrect value which can lead to unexpected behavior. At worst the attacker can execute arbitrary code. The first step is exploratory meaning the attacker looks for an integer variable that they can control. The attacker finds an integer variable that they can write into or manipulate and try to get the value of the integer out of the possible range. The integer variable is forced to have a value out of range which set its final value to an unexpected value. The target host acts on the data and unexpected behavior may happen. |
High |
Cybersecurity needs ?
Strengthen software security from the outset with our DevSecOps expertise
Integrate security right from the start of the software development cycle for more robust applications and greater customer confidence.
Our team of DevSecOps experts can help you secure your APIs, data pipelines, CI/CD chains, Docker containers and Kubernetes deployments.
Discover this offer