Group APT1
APT1 is a Chinese threat group that has been attributed to the 2nd Bureau of the People’s Liberation Army (PLA) General Staff Department’s (GSD) 3rd Department, commonly known by its Military Unit Cover Designator (MUCD) as Unit 61398.
List of techniques used :
id | description |
---|---|
T1003.001 | OS Credential Dumping: LSASS Memory Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material. As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system. For example, on the target host use procdump: * procdump -ma lsass.exe lsass_dump Locally, mimikatz can be run using: * sekurlsa::Minidump lsassdump.dmp * sekurlsa::logonPasswords Built-in Windows tools such as `comsvcs.dll` can also be used: * rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full Similar to Image File Execution Options Injection, the silent process exit mechanism can be abused to create a memory dump of `lsass.exe` through Windows Error Reporting (`WerFault.exe`). Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user's Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called. The following SSPs can be used to access credentials: * Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package. * Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges. * Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later. * CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services. |
T1005 | Data from Local System Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration. Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system. |
T1007 | System Service Discovery Adversaries may try to gather information about registered local system services. Adversaries may obtain information about services using tools as well as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and net start. Adversaries may use the information from System Service Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. |
T1016 | System Network Configuration Discovery Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next. |
T1021.001 | Remote Services: Remote Desktop Protocol Adversaries may use Valid Accounts to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user. Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS). Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the Accessibility Features or Terminal Services DLL for Persistence. |
T1036.005 | Masquerading: Match Legitimate Name or Location Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic. |
T1049 | System Network Connections Discovery Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network. An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary's goals. Cloud providers may have different ways in which their virtual networks operate. Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services. Utilities and commands that acquire this information include netstat, "net use," and "net session" with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to "net session". Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief). |
T1057 | Process Discovery Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes. |
T1059.003 | Command and Scripting Interpreter: Windows Command Shell Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel. |
T1087.001 | Account Discovery: Local Account Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior. Commands such as net user and net localgroup of the Net utility and id and groups on macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd file. On macOS the dscl . list /Users command can be used to enumerate local accounts. |
T1114.001 | Email Collection: Local Email Collection Adversaries may target user email on local systems to collect sensitive information. Files containing email data can be acquired from a user’s local system, such as Outlook storage or cache files. Outlook stores data locally in offline data files with an extension of .ost. Outlook 2010 and later supports .ost file sizes up to 50GB, while earlier versions of Outlook support up to 20GB. IMAP accounts in Outlook 2013 (and earlier) and POP accounts use Outlook Data Files (.pst) as opposed to .ost, whereas IMAP accounts in Outlook 2016 (and later) use .ost files. Both types of Outlook data files are typically stored in `C:Users\DocumentsOutlook Files` or `C:Users\AppDataLocalMicrosoftOutlook`. |
T1114.002 | Email Collection: Remote Email Collection Adversaries may target an Exchange server, Office 365, or Google Workspace to collect sensitive information. Adversaries may leverage a user's credentials and interact directly with the Exchange server to acquire information from within a network. Adversaries may also access externally facing Exchange services, Office 365, or Google Workspace to access email using credentials or access tokens. Tools such as MailSniper can be used to automate searches for specific keywords. |
T1119 | Automated Collection Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of a Command and Scripting Interpreter to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. In cloud-based environments, adversaries may also use cloud APIs, data pipelines, command line interfaces, or extract, transform, and load (ETL) services to automatically collect data. This functionality could also be built into remote access tools. This technique may incorporate use of other techniques such as File and Directory Discovery and Lateral Tool Transfer to identify and move files, as well as Cloud Service Dashboard and Cloud Storage Object Discovery to identify resources in cloud environments. |
T1135 | Network Share Discovery Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network. File sharing over a Windows network occurs over the SMB protocol. Net can be used to query a remote system for available shared drives using the net view \remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services. |
T1550.002 | Use Alternate Authentication Material: Pass the Hash Adversaries may “pass the hash” using stolen password hashes to move laterally within an environment, bypassing normal system access controls. Pass the hash (PtH) is a method of authenticating as a user without having access to the user's cleartext password. This method bypasses standard authentication steps that require a cleartext password, moving directly into the portion of the authentication that uses the password hash. When performing PtH, valid password hashes for the account being used are captured using a Credential Access technique. Captured hashes are used with PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions on local or remote systems. Adversaries may also use stolen password hashes to "overpass the hash." Similar to PtH, this involves using a password hash to authenticate as a user but also uses the password hash to create a valid Kerberos ticket. This ticket can then be used to perform Pass the Ticket attacks. |
T1560.001 | Archive Collected Data: Archive via Utility Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport. Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar on Linux and macOS or zip on Windows systems. On Windows, diantz or makecab may be used to package collected files into a cabinet (.cab) file. diantz may also be used to download and compress files from remote locations (i.e. Remote Data Staging). xcopy on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration. Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities. |
T1566.001 | Phishing: Spearphishing Attachment Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one. |
T1566.002 | Phishing: Spearphishing Link Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of links to download malware contained in email, instead of attaching malicious files to the email itself, to avoid defenses that may inspect email attachments. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this case, the malicious emails contain links. Generally, the links will be accompanied by social engineering text and require the user to actively click or copy and paste a URL into a browser, leveraging User Execution. The visited website may compromise the web browser using an exploit, or the user will be prompted to download applications, documents, zip files, or even executables depending on the pretext for the email in the first place. Adversaries may also include links that are intended to interact directly with an email reader, including embedded images intended to exploit the end system directly. Additionally, adversaries may use seemingly benign links that abuse special characters to mimic legitimate websites (known as an "IDN homograph attack"). URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`. Adversaries may also utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when accepted by the user provide permissions/access for malicious applications, allowing adversaries to Steal Application Access Tokens. These stolen access tokens allow the adversary to perform various actions on behalf of the user via API calls. Adversaries may also utilize spearphishing links to Steal Application Access Tokens that grant immediate access to the victim environment. For example, a user may be lured through “consent phishing” into granting adversaries permissions/access via a malicious OAuth 2.0 request URL . Similarly, malicious links may also target device-based authorization, such as OAuth 2.0 device authorization grant flow which is typically used to authenticate devices without UIs/browsers. Known as “device code phishing,” an adversary may send a link that directs the victim to a malicious authorization page where the user is tricked into entering a code/credentials that produces a device token. |
T1583.001 | Acquire Infrastructure: Domains Adversaries may acquire domains that can be used during targeting. Domain names are the human readable names used to represent one or more IP addresses. They can be purchased or, in some cases, acquired for free. Adversaries may use acquired domains for a variety of purposes, including for Phishing, Drive-by Compromise, and Command and Control. Adversaries may choose domains that are similar to legitimate domains, including through use of homoglyphs or use of a different top-level domain (TLD). Typosquatting may be used to aid in delivery of payloads via Drive-by Compromise. Adversaries may also use internationalized domain names (IDNs) and different character sets (e.g. Cyrillic, Greek, etc.) to execute "IDN homograph attacks," creating visually similar lookalike domains used to deliver malware to victim machines. Different URIs/URLs may also be dynamically generated to uniquely serve malicious content to victims (including one-time, single use domain names). Adversaries may also acquire and repurpose expired domains, which may be potentially already allowlisted/trusted by defenders based on an existing reputation/history. Domain registrars each maintain a publicly viewable database that displays contact information for every registered domain. Private WHOIS services display alternative information, such as their own company data, rather than the owner of the domain. Adversaries may use such private WHOIS services to obscure information about who owns a purchased domain. Adversaries may further interrupt efforts to track their infrastructure by using varied registration information and purchasing domains with different domain registrars. |
T1584.001 | Compromise Infrastructure: Domains Adversaries may hijack domains and/or subdomains that can be used during targeting. Domain registration hijacking is the act of changing the registration of a domain name without the permission of the original registrant. Adversaries may gain access to an email account for the person listed as the owner of the domain. The adversary can then claim that they forgot their password in order to make changes to the domain registration. Other possibilities include social engineering a domain registration help desk to gain access to an account or taking advantage of renewal process gaps. Subdomain hijacking can occur when organizations have DNS entries that point to non-existent or deprovisioned resources. In such cases, an adversary may take control of a subdomain to conduct operations with the benefit of the trust associated with that domain. Adversaries who compromise a domain may also engage in domain shadowing by creating malicious subdomains under their control while keeping any existing DNS records. As service will not be disrupted, the malicious subdomains may go unnoticed for long periods of time. |
T1585.002 | Establish Accounts: Email Accounts Adversaries may create email accounts that can be used during targeting. Adversaries can use accounts created with email providers to further their operations, such as leveraging them to conduct Phishing for Information or Phishing. Establishing email accounts may also allow adversaries to abuse free services – such as trial periods – to Acquire Infrastructure for follow-on purposes. Adversaries may also take steps to cultivate a persona around the email account, such as through use of Social Media Accounts, to increase the chance of success of follow-on behaviors. Created email accounts can also be used in the acquisition of infrastructure (ex: Domains). To decrease the chance of physically tying back operations to themselves, adversaries may make use of disposable email services. |
T1588.001 | Obtain Capabilities: Malware Adversaries may buy, steal, or download malware that can be used during targeting. Malicious software can include payloads, droppers, post-compromise tools, backdoors, packers, and C2 protocols. Adversaries may acquire malware to support their operations, obtaining a means for maintaining control of remote machines, evading defenses, and executing post-compromise behaviors. In addition to downloading free malware from the internet, adversaries may purchase these capabilities from third-party entities. Third-party entities can include technology companies that specialize in malware development, criminal marketplaces (including Malware-as-a-Service, or MaaS), or from individuals. In addition to purchasing malware, adversaries may steal and repurpose malware from third-party entities (including other adversaries). |
T1588.002 | Obtain Capabilities: Tool Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as Cobalt Strike. Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions. Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries). |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.