Group Moses Staff
Moses Staff is a suspected Iranian threat group that has primarily targeted Israeli companies since at least September 2021. Moses Staff openly stated their motivation in attacking Israeli companies is to cause damage by leaking stolen sensitive data and encrypting the victim's networks without a ransom demand. Security researchers assess Moses Staff is politically motivated, and has targeted government, finance, travel, energy, manufacturing, and utility companies outside of Israel as well, including those in Italy, India, Germany, Chile, Turkey, the UAE, and the US.
List of techniques used :
id | description |
---|---|
T1016 | System Network Configuration Discovery Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next. |
T1021.002 | Remote Services: SMB/Windows Admin Shares Adversaries may use Valid Accounts to interact with a remote network share using Server Message Block (SMB). The adversary may then perform actions as the logged-on user. SMB is a file, printer, and serial port sharing protocol for Windows machines on the same network or domain. Adversaries may use SMB to interact with file shares, allowing them to move laterally throughout a network. Linux and macOS implementations of SMB typically use Samba. Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include `C$`, `ADMIN$`, and `IPC$`. Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over SMB, to interact with systems using remote procedure calls (RPCs), transfer files, and run transferred binaries through remote Execution. Example execution techniques that rely on authenticated sessions over SMB/RPC are Scheduled Task/Job, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels. |
T1027.013 | Obfuscated Files or Information: Encrypted/Encoded File Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as Software Packing, Steganography, and Embedded Payloads, share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., Deobfuscate/Decode Files or Information) at the time of execution/use. This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files. Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64. The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection. For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a Phishing payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., User Execution). Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until Command and Scripting Interpreter execution. |
T1082 | System Information Discovery An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine. |
T1087.001 | Account Discovery: Local Account Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior. Commands such as net user and net localgroup of the Net utility and id and groups on macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd file. On macOS the dscl . list /Users command can be used to enumerate local accounts. |
T1105 | Ingress Tool Transfer Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine. |
T1190 | Exploit Public-Facing Application Adversaries may attempt to exploit a weakness in an Internet-facing host or system to initially access a network. The weakness in the system can be a software bug, a temporary glitch, or a misconfiguration. Exploited applications are often websites/web servers, but can also include databases (like SQL), standard services (like SMB or SSH), network device administration and management protocols (like SNMP and Smart Install), and any other system with Internet accessible open sockets. Depending on the flaw being exploited this may also involve Exploitation for Defense Evasion or Exploitation for Client Execution. If an application is hosted on cloud-based infrastructure and/or is containerized, then exploiting it may lead to compromise of the underlying instance or container. This can allow an adversary a path to access the cloud or container APIs, exploit container host access via Escape to Host, or take advantage of weak identity and access management policies. Adversaries may also exploit edge network infrastructure and related appliances, specifically targeting devices that do not support robust host-based defenses. For websites and databases, the OWASP top 10 and CWE top 25 highlight the most common web-based vulnerabilities. |
T1505.003 | Server Software Component: Web Shell Adversaries may backdoor web servers with web shells to establish persistent access to systems. A Web shell is a Web script that is placed on an openly accessible Web server to allow an adversary to access the Web server as a gateway into a network. A Web shell may provide a set of functions to execute or a command-line interface on the system that hosts the Web server. In addition to a server-side script, a Web shell may have a client interface program that is used to talk to the Web server (e.g. China Chopper Web shell client). |
T1553.002 | Subvert Trust Controls: Code Signing Adversaries may create, acquire, or steal code signing materials to sign their malware or tools. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. The certificates used during an operation may be created, acquired, or stolen by the adversary. Unlike Invalid Code Signature, this activity will result in a valid signature. Code signing to verify software on first run can be used on modern Windows and macOS systems. It is not used on Linux due to the decentralized nature of the platform. Code signing certificates may be used to bypass security policies that require signed code to execute on a system. |
T1562.004 | Impair Defenses: Disable or Modify System Firewall Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel. Modifying or disabling a system firewall may enable adversary C2 communications, lateral movement, and/or data exfiltration that would otherwise not be allowed. For example, adversaries may add a new firewall rule for a well-known protocol (such as RDP) using a non-traditional and potentially less securitized port (i.e. Non-Standard Port). Adversaries may also modify host networking settings that indirectly manipulate system firewalls, such as interface bandwidth or network connection request thresholds. Settings related to enabling abuse of various Remote Services may also indirectly modify firewall rules. |
T1587.001 | Develop Capabilities: Malware Adversaries may develop malware and malware components that can be used during targeting. Building malicious software can include the development of payloads, droppers, post-compromise tools, backdoors (including backdoored images), packers, C2 protocols, and the creation of infected removable media. Adversaries may develop malware to support their operations, creating a means for maintaining control of remote machines, evading defenses, and executing post-compromise behaviors. As with legitimate development efforts, different skill sets may be required for developing malware. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's malware development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the malware. Some aspects of malware development, such as C2 protocol development, may require adversaries to obtain additional infrastructure. For example, malware developed that will communicate with Twitter for C2, may require use of Web Services. |
T1588.002 | Obtain Capabilities: Tool Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as Cobalt Strike. Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions. Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries). |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.