Malware Derusbi
Derusbi is malware used by multiple Chinese APT groups. Both Windows and Linux variants have been observed.
Platforms : Linux, Windows
Version : 1.2
Created : 31 May 2017
Last Modified : 20 March 2023
Version : 1.2
Created : 31 May 2017
Last Modified : 20 March 2023
List of techniques used :
id | description |
---|---|
T1008 | Fallback Channels Adversaries may use fallback or alternate communication channels if the primary channel is compromised or inaccessible in order to maintain reliable command and control and to avoid data transfer thresholds. |
T1012 | Query Registry Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software. The Registry contains a significant amount of information about the operating system, configuration, software, and security. Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. |
T1033 | System Owner/User Discovery Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device. |
T1055.001 | Process Injection: Dynamic-link Library Injection Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process. DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary). Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module's AddressOfEntryPoint before starting a new thread in the target process. This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process. |
T1056.001 | Input Capture: Keylogging Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems. Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes. Some methods include: * Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data. * Reading raw keystroke data from the hardware buffer. * Windows Registry modifications. * Custom drivers. * Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions. |
T1057 | Process Discovery Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes. |
T1059.004 | Command and Scripting Interpreter: Unix Shell Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution. Unix shells can control every aspect of a system, with certain commands requiring elevated privileges. Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with SSH. Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence. |
T1070.004 | Indicator Removal: File Deletion Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS. |
T1070.006 | Indicator Removal: Timestomp Adversaries may modify file time attributes to hide new files or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder and blend malicious files with legitimate files. Both the `$STANDARD_INFORMATION` (`$SI`) and `$FILE_NAME` (`$FN`) attributes record times in a Master File Table (MFT) file. `$SI` (dates/time stamps) is displayed to the end user, including in the File System view, while `$FN` is dealt with by the kernel. Modifying the `$SI` attribute is the most common method of timestomping because it can be modified at the user level using API calls. `$FN` timestomping, however, typically requires interacting with the system kernel or moving or renaming a file. Adversaries modify timestamps on files so that they do not appear conspicuous to forensic investigators or file analysis tools. In order to evade detections that rely on identifying discrepancies between the `$SI` and `$FN` attributes, adversaries may also engage in “double timestomping” by modifying times on both attributes simultaneously. Timestomping may be used along with file name Masquerading to hide malware and tools. |
T1082 | System Information Discovery An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine. |
T1083 | File and Directory Discovery Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access. |
T1095 | Non-Application Layer Protocol Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts. However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications. |
T1113 | Screen Capture Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture. |
T1123 | Audio Capture An adversary can leverage a computer's peripheral devices (e.g., microphones and webcams) or applications (e.g., voice and video call services) to capture audio recordings for the purpose of listening into sensitive conversations to gather information. Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture audio. Audio files may be written to disk and exfiltrated later. |
T1125 | Video Capture An adversary can leverage a computer's peripheral devices (e.g., integrated cameras or webcams) or applications (e.g., video call services) to capture video recordings for the purpose of gathering information. Images may also be captured from devices or applications, potentially in specified intervals, in lieu of video files. Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture video or images. Video or image files may be written to disk and exfiltrated later. This technique differs from Screen Capture due to use of specific devices or applications for video recording rather than capturing the victim's screen. In macOS, there are a few different malware samples that record the user's webcam such as FruitFly and Proton. |
T1218.010 | System Binary Proxy Execution: Regsvr32 Adversaries may abuse Regsvr32.exe to proxy execution of malicious code. Regsvr32.exe is a command-line program used to register and unregister object linking and embedding controls, including dynamic link libraries (DLLs), on Windows systems. The Regsvr32.exe binary may also be signed by Microsoft. Malicious usage of Regsvr32.exe may avoid triggering security tools that may not monitor execution of, and modules loaded by, the regsvr32.exe process because of allowlists or false positives from Windows using regsvr32.exe for normal operations. Regsvr32.exe can also be used to specifically bypass application control using functionality to load COM scriptlets to execute DLLs under user permissions. Since Regsvr32.exe is network and proxy aware, the scripts can be loaded by passing a uniform resource locator (URL) to file on an external Web server as an argument during invocation. This method makes no changes to the Registry as the COM object is not actually registered, only executed. This variation of the technique is often referred to as a "Squiblydoo" and has been used in campaigns targeting governments. Regsvr32.exe can also be leveraged to register a COM Object used to establish persistence via Component Object Model Hijacking. |
T1571 | Non-Standard Port Adversaries may communicate using a protocol and port pairing that are typically not associated. For example, HTTPS over port 8088 or port 587 as opposed to the traditional port 443. Adversaries may make changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network data. Adversaries may also make changes to victim systems to abuse non-standard ports. For example, Registry keys and other configuration settings can be used to modify protocol and port pairings. |
T1573.001 | Encrypted Channel: Symmetric Cryptography Adversaries may employ a known symmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Symmetric encryption algorithms use the same key for plaintext encryption and ciphertext decryption. Common symmetric encryption algorithms include AES, DES, 3DES, Blowfish, and RC4. |
List of groups using the malware :
id | description |
---|---|
G0001 | Axiom Axiom is a suspected Chinese cyber espionage group that has targeted the aerospace, defense, government, manufacturing, and media sectors since at least 2008. Some reporting suggests a degree of overlap between Axiom and Winnti Group but the two groups appear to be distinct based on differences in reporting on TTPs and targeting. |
G0009 | Deep Panda Deep Panda is a suspected Chinese threat group known to target many industries, including government, defense, financial, and telecommunications. The intrusion into healthcare company Anthem has been attributed to Deep Panda. This group is also known as Shell Crew, WebMasters, KungFu Kittens, and PinkPanther. Deep Panda also appears to be known as Black Vine based on the attribution of both group names to the Anthem intrusion. Some analysts track Deep Panda and APT19 as the same group, but it is unclear from open source information if the groups are the same. |
G0065 | Leviathan Leviathan is a Chinese state-sponsored cyber espionage group that has been attributed to the Ministry of State Security's (MSS) Hainan State Security Department and an affiliated front company. Active since at least 2009, Leviathan has targeted the following sectors: academia, aerospace/aviation, biomedical, defense industrial base, government, healthcare, manufacturing, maritime, and transportation across the US, Canada, Europe, the Middle East, and Southeast Asia. |
G0096 | APT41 APT41 is a threat group that researchers have assessed as Chinese state-sponsored espionage group that also conducts financially-motivated operations. Active since at least 2012, APT41 has been observed targeting various industries, including but not limited to healthcare, telecom, technology, finance, education, retail and video game industries in 14 countries. Notable behaviors include using a wide range of malware and tools to complete mission objectives. APT41 overlaps at least partially with public reporting on groups including BARIUM and Winnti Group. |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.