Malware POSHSPY
POSHSPY is a backdoor that has been used by APT29 since at least 2015. It appears to be used as a secondary backdoor used if the actors lost access to their primary backdoors.
Platforms : Windows
Version : 1.2
Created : 14 December 2017
Last Modified : 30 March 2020
Version : 1.2
Created : 14 December 2017
Last Modified : 30 March 2020
List of techniques used :
id | description |
---|---|
T1027 | Obfuscated Files or Information Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. |
T1030 | Data Transfer Size Limits An adversary may exfiltrate data in fixed size chunks instead of whole files or limit packet sizes below certain thresholds. This approach may be used to avoid triggering network data transfer threshold alerts. |
T1059.001 | Command and Scripting Interpreter: PowerShell Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI). |
T1070.006 | Indicator Removal: Timestomp Adversaries may modify file time attributes to hide new files or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder and blend malicious files with legitimate files. Both the `$STANDARD_INFORMATION` (`$SI`) and `$FILE_NAME` (`$FN`) attributes record times in a Master File Table (MFT) file. `$SI` (dates/time stamps) is displayed to the end user, including in the File System view, while `$FN` is dealt with by the kernel. Modifying the `$SI` attribute is the most common method of timestomping because it can be modified at the user level using API calls. `$FN` timestomping, however, typically requires interacting with the system kernel or moving or renaming a file. Adversaries modify timestamps on files so that they do not appear conspicuous to forensic investigators or file analysis tools. In order to evade detections that rely on identifying discrepancies between the `$SI` and `$FN` attributes, adversaries may also engage in “double timestomping” by modifying times on both attributes simultaneously. Timestomping may be used along with file name Masquerading to hide malware and tools. |
T1105 | Ingress Tool Transfer Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine. |
T1546.003 | Event Triggered Execution: Windows Management Instrumentation Event Subscription Adversaries may establish persistence and elevate privileges by executing malicious content triggered by a Windows Management Instrumentation (WMI) event subscription. WMI can be used to install event filters, providers, consumers, and bindings that execute code when a defined event occurs. Examples of events that may be subscribed to are the wall clock time, user login, or the computer's uptime. Adversaries may use the capabilities of WMI to subscribe to an event and execute arbitrary code when that event occurs, providing persistence on a system. Adversaries may also compile WMI scripts – using `mofcomp.exe` –into Windows Management Object (MOF) files (.mof extension) that can be used to create a malicious subscription. WMI subscription execution is proxied by the WMI Provider Host process (WmiPrvSe.exe) and thus may result in elevated SYSTEM privileges. |
T1568.002 | Dynamic Resolution: Domain Generation Algorithms Adversaries may make use of Domain Generation Algorithms (DGAs) to dynamically identify a destination domain for command and control traffic rather than relying on a list of static IP addresses or domains. This has the advantage of making it much harder for defenders to block, track, or take over the command and control channel, as there potentially could be thousands of domains that malware can check for instructions. DGAs can take the form of apparently random or “gibberish” strings (ex: istgmxdejdnxuyla.ru) when they construct domain names by generating each letter. Alternatively, some DGAs employ whole words as the unit by concatenating words together instead of letters (ex: cityjulydish.net). Many DGAs are time-based, generating a different domain for each time period (hourly, daily, monthly, etc). Others incorporate a seed value as well to make predicting future domains more difficult for defenders. Adversaries may use DGAs for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ a DGA as a means to reestablishing command and control. |
T1573.002 | Encrypted Channel: Asymmetric Cryptography Adversaries may employ a known asymmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Asymmetric cryptography, also known as public key cryptography, uses a keypair per party: one public that can be freely distributed, and one private. Due to how the keys are generated, the sender encrypts data with the receiver’s public key and the receiver decrypts the data with their private key. This ensures that only the intended recipient can read the encrypted data. Common public key encryption algorithms include RSA and ElGamal. For efficiency, many protocols (including SSL/TLS) use symmetric cryptography once a connection is established, but use asymmetric cryptography to establish or transmit a key. As such, these protocols are classified as Asymmetric Cryptography. |
List of groups using the malware :
id | description |
---|---|
G0016 | APT29 APT29 is threat group that has been attributed to Russia's Foreign Intelligence Service (SVR). They have operated since at least 2008, often targeting government networks in Europe and NATO member countries, research institutes, and think tanks. APT29 reportedly compromised the Democratic National Committee starting in the summer of 2015. In April 2021, the US and UK governments attributed the SolarWinds Compromise to the SVR; public statements included citations to APT29, Cozy Bear, and The Dukes. Industry reporting also referred to the actors involved in this campaign as UNC2452, NOBELIUM, StellarParticle, Dark Halo, and SolarStorm. |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.