Malware Umbreon

A Linux rootkit that provides backdoor access and hides from defenders.


List of techniques used :


id description
T1014 Rootkit
Adversaries may use rootkits to hide the presence of programs, files, network connections, services, drivers, and other system components. Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the user or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware. Rootkits have been seen for Windows, Linux, and Mac OS X systems.
T1059.003 Command and Scripting Interpreter: Windows Command Shell
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.
T1078.003 Valid Accounts: Local Accounts
Adversaries may obtain and abuse credentials of a local account as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. Local Accounts may also be abused to elevate privileges and harvest credentials through OS Credential Dumping. Password reuse may allow the abuse of local accounts across a set of machines on a network for the purposes of Privilege Escalation and Lateral Movement.
T1095 Non-Application Layer Protocol
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts. However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
T1205 Traffic Signaling
Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software. Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s). The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r , is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs. On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives. To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture. Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement.

List of groups using the malware :


id description

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.