Malware Zebrocy

Zebrocy is a Trojan that has been used by APT28 since at least November 2015. The malware comes in several programming language variants, including C++, Delphi, AutoIt, C#, VB.NET, and Golang.


List of techniques used :


id description
T1012 Query Registry
Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software. The Registry contains a significant amount of information about the operating system, configuration, software, and security. Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
T1016 System Network Configuration Discovery
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
T1027.002 Obfuscated Files or Information: Software Packing
Adversaries may perform software packing or virtual machine software protection to conceal their code. Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory. Virtual machine software protection translates an executable's original code into a special format that only a special virtual machine can run. A virtual machine is then called to run this code. Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available, but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses.
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1037.001 Boot or Logon Initialization Scripts: Logon Script (Windows)
Adversaries may use Windows logon scripts automatically executed at logon initialization to establish persistence. Windows allows logon scripts to be run whenever a specific user or group of users log into a system. This is done via adding a path to a script to the HKCUEnvironmentUserInitMprLogonScript Registry key. Adversaries may use these scripts to maintain persistence on a single system. Depending on the access configuration of the logon scripts, either local credentials or an administrator account may be necessary.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1047 Windows Management Instrumentation
Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is designed for programmers and is the infrastructure for management data and operations on Windows systems. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model and Windows Remote Management. Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS. An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as Execution of commands and payloads. For example, `wmic.exe` can be abused by an adversary to delete shadow copies with the command `wmic.exe Shadowcopy Delete` (i.e., Inhibit System Recovery). **Note:** `wmic.exe` is deprecated as of January of 2024, with the WMIC feature being “disabled by default” on Windows 11+. WMIC will be removed from subsequent Windows releases and replaced by PowerShell as the primary WMI interface. In addition to PowerShell and tools like `wbemtool.exe`, COM APIs can also be used to programmatically interact with WMI via C++, .NET, VBScript, etc.
T1049 System Network Connections Discovery
Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network. An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary's goals. Cloud providers may have different ways in which their virtual networks operate. Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services. Utilities and commands that acquire this information include netstat, "net use," and "net session" with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to "net session". Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief).
T1053.005 Scheduled Task/Job: Scheduled Task
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task. The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel. An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes. Adversaries may also create "hidden" scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions). Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.
T1056.004 Input Capture: Credential API Hooking
Adversaries may hook into Windows application programming interface (API) functions to collect user credentials. Malicious hooking mechanisms may capture API calls that include parameters that reveal user authentication credentials. Unlike Keylogging, this technique focuses specifically on API functions that include parameters that reveal user credentials. Hooking involves redirecting calls to these functions and can be implemented via: * **Hooks procedures**, which intercept and execute designated code in response to events such as messages, keystrokes, and mouse inputs. * **Import address table (IAT) hooking**, which use modifications to a process’s IAT, where pointers to imported API functions are stored. * **Inline hooking**, which overwrites the first bytes in an API function to redirect code flow.
T1057 Process Discovery
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.
T1059.003 Command and Scripting Interpreter: Windows Command Shell
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.
T1070.004 Indicator Removal: File Deletion
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1071.003 Application Layer Protocol: Mail Protocols
Adversaries may communicate using application layer protocols associated with electronic mail delivery to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as SMTP/S, POP3/S, and IMAP that carry electronic mail may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the email messages themselves. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1074.001 Data Staged: Local Data Staging
Adversaries may stage collected data in a central location or directory on the local system prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as Archive Collected Data. Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location. Adversaries may also stage collected data in various available formats/locations of a system, including local storage databases/repositories or the Windows Registry.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1083 File and Directory Discovery
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1113 Screen Capture
Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.
T1119 Automated Collection
Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of a Command and Scripting Interpreter to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. In cloud-based environments, adversaries may also use cloud APIs, data pipelines, command line interfaces, or extract, transform, and load (ETL) services to automatically collect data. This functionality could also be built into remote access tools. This technique may incorporate use of other techniques such as File and Directory Discovery and Lateral Tool Transfer to identify and move files, as well as Cloud Service Dashboard and Cloud Storage Object Discovery to identify resources in cloud environments.
T1120 Peripheral Device Discovery
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system. Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
T1124 System Time Discovery
An adversary may gather the system time and/or time zone settings from a local or remote system. The system time is set and stored by services, such as the Windows Time Service on Windows or systemsetup on macOS. These time settings may also be synchronized between systems and services in an enterprise network, typically accomplished with a network time server within a domain. System time information may be gathered in a number of ways, such as with Net on Windows by performing net time \hostname to gather the system time on a remote system. The victim's time zone may also be inferred from the current system time or gathered by using w32tm /tz. In addition, adversaries can discover device uptime through functions such as GetTickCount() to determine how long it has been since the system booted up. On network devices, Network Device CLI commands such as `show clock detail` can be used to see the current time configuration. In addition, system calls – such as time() – have been used to collect the current time on Linux devices. On macOS systems, adversaries may use commands such as systemsetup -gettimezone or timeIntervalSinceNow to gather current time zone information or current date and time. This information could be useful for performing other techniques, such as executing a file with a Scheduled Task/Job, or to discover locality information based on time zone to assist in victim targeting (i.e. System Location Discovery). Adversaries may also use knowledge of system time as part of a time bomb, or delaying execution until a specified date/time.
T1132.001 Data Encoding: Standard Encoding
Adversaries may encode data with a standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system that adheres to existing protocol specifications. Common data encoding schemes include ASCII, Unicode, hexadecimal, Base64, and MIME. Some data encoding systems may also result in data compression, such as gzip.
T1135 Network Share Discovery
Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network. File sharing over a Windows network occurs over the SMB protocol. Net can be used to query a remote system for available shared drives using the net view \remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services.
T1140 Deobfuscate/Decode Files or Information
Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file. Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
T1555.003 Credentials from Password Stores: Credentials from Web Browsers
Adversaries may acquire credentials from web browsers by reading files specific to the target browser. Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers. For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData, which uses the victim’s cached logon credentials as the decryption key. Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc. Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager. Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials. After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary's objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).
T1560 Archive Collected Data
An adversary may compress and/or encrypt data that is collected prior to exfiltration. Compressing the data can help to obfuscate the collected data and minimize the amount of data sent over the network. Encryption can be used to hide information that is being exfiltrated from detection or make exfiltration less conspicuous upon inspection by a defender. Both compression and encryption are done prior to exfiltration, and can be performed using a utility, 3rd party library, or custom method.
T1573.002 Encrypted Channel: Asymmetric Cryptography
Adversaries may employ a known asymmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Asymmetric cryptography, also known as public key cryptography, uses a keypair per party: one public that can be freely distributed, and one private. Due to how the keys are generated, the sender encrypts data with the receiver’s public key and the receiver decrypts the data with their private key. This ensures that only the intended recipient can read the encrypted data. Common public key encryption algorithms include RSA and ElGamal. For efficiency, many protocols (including SSL/TLS) use symmetric cryptography once a connection is established, but use asymmetric cryptography to establish or transmit a key. As such, these protocols are classified as Asymmetric Cryptography.

List of groups using the malware :


id description
G0007 APT28
APT28 is a threat group that has been attributed to Russia's General Staff Main Intelligence Directorate (GRU) 85th Main Special Service Center (GTsSS) military unit 26165. This group has been active since at least 2004. APT28 reportedly compromised the Hillary Clinton campaign, the Democratic National Committee, and the Democratic Congressional Campaign Committee in 2016 in an attempt to interfere with the U.S. presidential election. In 2018, the US indicted five GRU Unit 26165 officers associated with APT28 for cyber operations (including close-access operations) conducted between 2014 and 2018 against the World Anti-Doping Agency (WADA), the US Anti-Doping Agency, a US nuclear facility, the Organization for the Prohibition of Chemical Weapons (OPCW), the Spiez Swiss Chemicals Laboratory, and other organizations. Some of these were conducted with the assistance of GRU Unit 74455, which is also referred to as Sandworm Team.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.