Malware iKitten
iKitten is a macOS exfiltration agent .
Platforms : macOS
Version : 1.1
Created : 17 October 2018
Last Modified : 30 March 2020
Version : 1.1
Created : 17 October 2018
Last Modified : 30 March 2020
List of techniques used :
id | description |
---|---|
T1016 | System Network Configuration Discovery Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next. |
T1037.004 | Boot or Logon Initialization Scripts: RC Scripts Adversaries may establish persistence by modifying RC scripts which are executed during a Unix-like system’s startup. These files allow system administrators to map and start custom services at startup for different run levels. RC scripts require root privileges to modify. Adversaries can establish persistence by adding a malicious binary path or shell commands to rc.local, rc.common, and other RC scripts specific to the Unix-like distribution. Upon reboot, the system executes the script's contents as root, resulting in persistence. Adversary abuse of RC scripts is especially effective for lightweight Unix-like distributions using the root user as default, such as IoT or embedded systems. Several Unix-like systems have moved to Systemd and deprecated the use of RC scripts. This is now a deprecated mechanism in macOS in favor of Launchd. This technique can be used on Mac OS X Panther v10.3 and earlier versions which still execute the RC scripts. To maintain backwards compatibility some systems, such as Ubuntu, will execute the RC scripts if they exist with the correct file permissions. |
T1056.002 | Input Capture: GUI Input Capture Adversaries may mimic common operating system GUI components to prompt users for credentials with a seemingly legitimate prompt. When programs are executed that need additional privileges than are present in the current user context, it is common for the operating system to prompt the user for proper credentials to authorize the elevated privileges for the task (ex: Bypass User Account Control). Adversaries may mimic this functionality to prompt users for credentials with a seemingly legitimate prompt for a number of reasons that mimic normal usage, such as a fake installer requiring additional access or a fake malware removal suite. This type of prompt can be used to collect credentials via various languages such as AppleScript and PowerShell. On Linux systems adversaries may launch dialog boxes prompting users for credentials from malicious shell scripts or the command line (i.e. Unix Shell). Adversaries may also mimic common software authentication requests, such as those from browsers or email clients. This may also be paired with user activity monitoring (i.e., Browser Information Discovery and/or Application Window Discovery) to spoof prompts when users are naturally accessing sensitive sites/data. |
T1057 | Process Discovery Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes. |
T1555.001 | Credentials from Password Stores: Keychain Adversaries may acquire credentials from Keychain. Keychain (or Keychain Services) is the macOS credential management system that stores account names, passwords, private keys, certificates, sensitive application data, payment data, and secure notes. There are three types of Keychains: Login Keychain, System Keychain, and Local Items (iCloud) Keychain. The default Keychain is the Login Keychain, which stores user passwords and information. The System Keychain stores items accessed by the operating system, such as items shared among users on a host. The Local Items (iCloud) Keychain is used for items synced with Apple’s iCloud service. Keychains can be viewed and edited through the Keychain Access application or using the command-line utility security. Keychain files are located in ~/Library/Keychains/, /Library/Keychains/, and /Network/Library/Keychains/. Adversaries may gather user credentials from Keychain storage/memory. For example, the command security dump-keychain –d will dump all Login Keychain credentials from ~/Library/Keychains/login.keychain-db. Adversaries may also directly read Login Keychain credentials from the ~/Library/Keychains/login.keychain file. Both methods require a password, where the default password for the Login Keychain is the current user’s password to login to the macOS host. |
T1560.001 | Archive Collected Data: Archive via Utility Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport. Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar on Linux and macOS or zip on Windows systems. On Windows, diantz or makecab may be used to package collected files into a cabinet (.cab) file. diantz may also be used to download and compress files from remote locations (i.e. Remote Data Staging). xcopy on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration. Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities. |
T1564.001 | Hide Artifacts: Hidden Files and Directories Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS). On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name . Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app . On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys. Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files. |
List of groups using the malware :
id | description |
---|
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.