Malware SYNful Knock
SYNful Knock is a stealthy modification of the operating system of network devices that can be used to maintain persistence within a victim's network and provide new capabilities to the adversary.
Platforms : Network
Version : 1.0
Created : 19 October 2020
Last Modified : 14 December 2021
Version : 1.0
Created : 19 October 2020
Last Modified : 14 December 2021
List of techniques used :
id | description |
---|---|
T1205 | Traffic Signaling Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software. Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s). The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r , is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs. On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives. To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture. Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement. |
T1556.004 | Modify Authentication Process: Network Device Authentication Adversaries may use Patch System Image to hard code a password in the operating system, thus bypassing of native authentication mechanisms for local accounts on network devices. Modify System Image may include implanted code to the operating system for network devices to provide access for adversaries using a specific password. The modification includes a specific password which is implanted in the operating system image via the patch. Upon authentication attempts, the inserted code will first check to see if the user input is the password. If so, access is granted. Otherwise, the implanted code will pass the credentials on for verification of potentially valid credentials. |
T1601.001 | Modify System Image: Patch System Image Adversaries may modify the operating system of a network device to introduce new capabilities or weaken existing defenses. Some network devices are built with a monolithic architecture, where the entire operating system and most of the functionality of the device is contained within a single file. Adversaries may change this file in storage, to be loaded in a future boot, or in memory during runtime. To change the operating system in storage, the adversary will typically use the standard procedures available to device operators. This may involve downloading a new file via typical protocols used on network devices, such as TFTP, FTP, SCP, or a console connection. The original file may be overwritten, or a new file may be written alongside of it and the device reconfigured to boot to the compromised image. To change the operating system in memory, the adversary typically can use one of two methods. In the first, the adversary would make use of native debug commands in the original, unaltered running operating system that allow them to directly modify the relevant memory addresses containing the running operating system. This method typically requires administrative level access to the device. In the second method for changing the operating system in memory, the adversary would make use of the boot loader. The boot loader is the first piece of software that loads when the device starts that, in turn, will launch the operating system. Adversaries may use malicious code previously implanted in the boot loader, such as through the ROMMONkit method, to directly manipulate running operating system code in memory. This malicious code in the bootloader provides the capability of direct memory manipulation to the adversary, allowing them to patch the live operating system during runtime. By modifying the instructions stored in the system image file, adversaries may either weaken existing defenses or provision new capabilities that the device did not have before. Examples of existing defenses that can be impeded include encryption, via Weaken Encryption, authentication, via Network Device Authentication, and perimeter defenses, via Network Boundary Bridging. Adding new capabilities for the adversary’s purpose include Keylogging, Multi-hop Proxy, and Port Knocking. Adversaries may also compromise existing commands in the operating system to produce false output to mislead defenders. When this method is used in conjunction with Downgrade System Image, one example of a compromised system command may include changing the output of the command that shows the version of the currently running operating system. By patching the operating system, the adversary can change this command to instead display the original, higher revision number that they replaced through the system downgrade. When the operating system is patched in storage, this can be achieved in either the resident storage (typically a form of flash memory, which is non-volatile) or via TFTP Boot. When the technique is performed on the running operating system in memory and not on the stored copy, this technique will not survive across reboots. However, live memory modification of the operating system can be combined with ROMMONkit to achieve persistence. |
List of groups using the malware :
id | description |
---|
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.