Malware Penquin

Penquin is a remote access trojan (RAT) with multiple versions used by Turla to target Linux systems since at least 2014.


List of techniques used :


id description
T1016 System Network Configuration Discovery
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
T1027.005 Obfuscated Files or Information: Indicator Removal from Tools
Adversaries may remove indicators from tools if they believe their malicious tool was detected, quarantined, or otherwise curtailed. They can modify the tool by removing the indicator and using the updated version that is no longer detected by the target's defensive systems or subsequent targets that may use similar systems. A good example of this is when malware is detected with a file signature and quarantined by anti-virus software. An adversary who can determine that the malware was quarantined because of its file signature may modify the file to explicitly avoid that signature, and then re-use the malware.
T1027.013 Obfuscated Files or Information: Encrypted/Encoded File
Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as Software Packing, Steganography, and Embedded Payloads, share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., Deobfuscate/Decode Files or Information) at the time of execution/use. This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files. Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64. The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection. For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a Phishing payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., User Execution). Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until Command and Scripting Interpreter execution.
T1036.005 Masquerading: Match Legitimate Name or Location
Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic.
T1040 Network Sniffing
Adversaries may passively sniff network traffic to capture information about an environment, including authentication material passed over the network. Network sniffing refers to using the network interface on a system to monitor or capture information sent over a wired or wireless connection. An adversary may place a network interface into promiscuous mode to passively access data in transit over the network, or use span ports to capture a larger amount of data. Data captured via this technique may include user credentials, especially those sent over an insecure, unencrypted protocol. Techniques for name service resolution poisoning, such as LLMNR/NBT-NS Poisoning and SMB Relay, can also be used to capture credentials to websites, proxies, and internal systems by redirecting traffic to an adversary. Network sniffing may reveal configuration details, such as running services, version numbers, and other network characteristics (e.g. IP addresses, hostnames, VLAN IDs) necessary for subsequent Lateral Movement and/or Defense Evasion activities. Adversaries may likely also utilize network sniffing during Adversary-in-the-Middle (AiTM) to passively gain additional knowledge about the environment. In cloud-based environments, adversaries may still be able to use traffic mirroring services to sniff network traffic from virtual machines. For example, AWS Traffic Mirroring, GCP Packet Mirroring, and Azure vTap allow users to define specified instances to collect traffic from and specified targets to send collected traffic to. Often, much of this traffic will be in cleartext due to the use of TLS termination at the load balancer level to reduce the strain of encrypting and decrypting traffic. The adversary can then use exfiltration techniques such as Transfer Data to Cloud Account in order to access the sniffed traffic. On network devices, adversaries may perform network captures using Network Device CLI commands such as `monitor capture`.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1053.003 Scheduled Task/Job: Cron
Adversaries may abuse the cron utility to perform task scheduling for initial or recurring execution of malicious code. The cron utility is a time-based job scheduler for Unix-like operating systems. The crontab file contains the schedule of cron entries to be run and the specified times for execution. Any crontab files are stored in operating system-specific file paths. An adversary may use cron in Linux or Unix environments to execute programs at system startup or on a scheduled basis for Persistence.
T1059.004 Command and Scripting Interpreter: Unix Shell
Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution. Unix shells can control every aspect of a system, with certain commands requiring elevated privileges. Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with SSH. Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence.
T1070.004 Indicator Removal: File Deletion
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1083 File and Directory Discovery
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access.
T1095 Non-Application Layer Protocol
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts. However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1205 Traffic Signaling
Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software. Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s). The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r , is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs. On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives. To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture. Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement.
T1205.002 Traffic Signaling: Socket Filters
Adversaries may attach filters to a network socket to monitor then activate backdoors used for persistence or command and control. With elevated permissions, adversaries can use features such as the `libpcap` library to open sockets and install filters to allow or disallow certain types of data to come through the socket. The filter may apply to all traffic passing through the specified network interface (or every interface if not specified). When the network interface receives a packet matching the filter criteria, additional actions can be triggered on the host, such as activation of a reverse shell. To establish a connection, an adversary sends a crafted packet to the targeted host that matches the installed filter criteria. Adversaries have used these socket filters to trigger the installation of implants, conduct ping backs, and to invoke command shells. Communication with these socket filters may also be used in conjunction with Protocol Tunneling. Filters can be installed on any Unix-like platform with `libpcap` installed or on Windows hosts using `Winpcap`. Adversaries may use either `libpcap` with `pcap_setfilter` or the standard library function `setsockopt` with `SO_ATTACH_FILTER` options. Since the socket connection is not active until the packet is received, this behavior may be difficult to detect due to the lack of activity on a host, low CPU overhead, and limited visibility into raw socket usage.
T1222.002 File and Directory Permissions Modification: Linux and Mac File and Directory Permissions Modification
Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files. File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.). Most Linux and Linux-based platforms provide a standard set of permission groups (user, group, and other) and a standard set of permissions (read, write, and execute) that are applied to each group. While nuances of each platform’s permissions implementation may vary, most of the platforms provide two primary commands used to manipulate file and directory ACLs: chown (short for change owner), and chmod (short for change mode). Adversarial may use these commands to make themselves the owner of files and directories or change the mode if current permissions allow it. They could subsequently lock others out of the file. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via Unix Shell Configuration Modification or tainting/hijacking other instrumental binary/configuration files via Hijack Execution Flow.
T1573.002 Encrypted Channel: Asymmetric Cryptography
Adversaries may employ a known asymmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Asymmetric cryptography, also known as public key cryptography, uses a keypair per party: one public that can be freely distributed, and one private. Due to how the keys are generated, the sender encrypts data with the receiver’s public key and the receiver decrypts the data with their private key. This ensures that only the intended recipient can read the encrypted data. Common public key encryption algorithms include RSA and ElGamal. For efficiency, many protocols (including SSL/TLS) use symmetric cryptography once a connection is established, but use asymmetric cryptography to establish or transmit a key. As such, these protocols are classified as Asymmetric Cryptography.

List of groups using the malware :


id description
G0010 Turla
Turla is a cyber espionage threat group that has been attributed to Russia's Federal Security Service (FSB). They have compromised victims in over 50 countries since at least 2004, spanning a range of industries including government, embassies, military, education, research and pharmaceutical companies. Turla is known for conducting watering hole and spearphishing campaigns, and leveraging in-house tools and malware, such as Uroburos.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.