Malware ThiefQuest

ThiefQuest is a virus, data stealer, and wiper that presents itself as ransomware targeting macOS systems. ThiefQuest was first seen in 2020 distributed via trojanized pirated versions of popular macOS software on Russian forums sharing torrent links. Even though ThiefQuest presents itself as ransomware, since the dynamically generated encryption key is never sent to the attacker it may be more appropriately thought of as a form of wiper malware.


List of techniques used :


id description
T1036.005 Masquerading: Match Legitimate Name or Location
Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1056.001 Input Capture: Keylogging
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems. Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes. Some methods include: * Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data. * Reading raw keystroke data from the hardware buffer. * Windows Registry modifications. * Custom drivers. * Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.
T1057 Process Discovery
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.
T1059.002 Command and Scripting Interpreter: AppleScript
Adversaries may abuse AppleScript for execution. AppleScript is a macOS scripting language designed to control applications and parts of the OS via inter-application messages called AppleEvents. These AppleEvent messages can be sent independently or easily scripted with AppleScript. These events can locate open windows, send keystrokes, and interact with almost any open application locally or remotely. Scripts can be run from the command-line via osascript /path/to/script or osascript -e "script here". Aside from the command line, scripts can be executed in numerous ways including Mail rules, Calendar.app alarms, and Automator workflows. AppleScripts can also be executed as plain text shell scripts by adding #!/usr/bin/osascript to the start of the script file. AppleScripts do not need to call osascript to execute. However, they may be executed from within mach-O binaries by using the macOS Native APIs NSAppleScript or OSAScript, both of which execute code independent of the /usr/bin/osascript command line utility. Adversaries may abuse AppleScript to execute various behaviors, such as interacting with an open SSH connection, moving to remote machines, and even presenting users with fake dialog boxes. These events cannot start applications remotely (they can start them locally), but they can interact with applications if they're already running remotely. On macOS 10.10 Yosemite and higher, AppleScript has the ability to execute Native APIs, which otherwise would require compilation and execution in a mach-O binary file format. Since this is a scripting language, it can be used to launch more common techniques as well such as a reverse shell via Python.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1106 Native API
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations. Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system. Native API functions (such as NtCreateProcess) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries. For example, functions such as the Windows API CreateProcess() or GNU fork() will allow programs and scripts to start other processes. This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations. Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code. Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks. Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.
T1486 Data Encrypted for Impact
Adversaries may encrypt data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. They can attempt to render stored data inaccessible by encrypting files or data on local and remote drives and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key (ransomware) or to render data permanently inaccessible in cases where the key is not saved or transmitted. In the case of ransomware, it is typical that common user files like Office documents, PDFs, images, videos, audio, text, and source code files will be encrypted (and often renamed and/or tagged with specific file markers). Adversaries may need to first employ other behaviors, such as File and Directory Permissions Modification or System Shutdown/Reboot, in order to unlock and/or gain access to manipulate these files. In some cases, adversaries may encrypt critical system files, disk partitions, and the MBR. To maximize impact on the target organization, malware designed for encrypting data may have worm-like features to propagate across a network by leveraging other attack techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares. Encryption malware may also leverage Internal Defacement, such as changing victim wallpapers, or otherwise intimidate victims by sending ransom notes or other messages to connected printers (known as "print bombing"). In cloud environments, storage objects within compromised accounts may also be encrypted.
T1497.003 Virtualization/Sandbox Evasion: Time Based Evasion
Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time. Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny. Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments. Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data). Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment's timestamp before and after execution of a sleep function.
T1518.001 Software Discovery: Security Software Discovery
Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as cloud monitoring agents and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software. Adversaries may also utilize the Cloud API to discover cloud-native security software installed on compute infrastructure, such as the AWS CloudWatch agent, Azure VM Agent, and Google Cloud Monitor agent. These agents may collect metrics and logs from the VM, which may be centrally aggregated in a cloud-based monitoring platform.
T1543.001 Create or Modify System Process: Launch Agent
Adversaries may create or modify launch agents to repeatedly execute malicious payloads as part of persistence. When a user logs in, a per-user launchd process is started which loads the parameters for each launch-on-demand user agent from the property list (.plist) file found in /System/Library/LaunchAgents, /Library/LaunchAgents, and ~/Library/LaunchAgents. Property list files use the Label, ProgramArguments , and RunAtLoad keys to identify the Launch Agent's name, executable location, and execution time. Launch Agents are often installed to perform updates to programs, launch user specified programs at login, or to conduct other developer tasks. Launch Agents can also be executed using the Launchctl command. Adversaries may install a new Launch Agent that executes at login by placing a .plist file into the appropriate folders with the RunAtLoad or KeepAlive keys set to true. The Launch Agent name may be disguised by using a name from the related operating system or benign software. Launch Agents are created with user level privileges and execute with user level permissions.
T1543.004 Create or Modify System Process: Launch Daemon
Adversaries may create or modify Launch Daemons to execute malicious payloads as part of persistence. Launch Daemons are plist files used to interact with Launchd, the service management framework used by macOS. Launch Daemons require elevated privileges to install, are executed for every user on a system prior to login, and run in the background without the need for user interaction. During the macOS initialization startup, the launchd process loads the parameters for launch-on-demand system-level daemons from plist files found in /System/Library/LaunchDaemons/ and /Library/LaunchDaemons/. Required Launch Daemons parameters include a Label to identify the task, Program to provide a path to the executable, and RunAtLoad to specify when the task is run. Launch Daemons are often used to provide access to shared resources, updates to software, or conduct automation tasks. Adversaries may install a Launch Daemon configured to execute at startup by using the RunAtLoad parameter set to true and the Program parameter set to the malicious executable path. The daemon name may be disguised by using a name from a related operating system or benign software (i.e. Masquerading). When the Launch Daemon is executed, the program inherits administrative permissions. Additionally, system configuration changes (such as the installation of third party package managing software) may cause folders such as usr/local/bin to become globally writeable. So, it is possible for poor configurations to allow an adversary to modify executables referenced by current Launch Daemon's plist files.
T1554 Compromise Host Software Binary
Adversaries may modify host software binaries to establish persistent access to systems. Software binaries/executables provide a wide range of system commands or services, programs, and libraries. Common software binaries are SSH clients, FTP clients, email clients, web browsers, and many other user or server applications. Adversaries may establish persistence though modifications to host software binaries. For example, an adversary may replace or otherwise infect a legitimate application binary (or support files) with a backdoor. Since these binaries may be routinely executed by applications or the user, the adversary can leverage this for persistent access to the host. An adversary may also modify a software binary such as an SSH client in order to persistently collect credentials during logins (i.e., Modify Authentication Process). An adversary may also modify an existing binary by patching in malicious functionality (e.g., IAT Hooking/Entry point patching) prior to the binary’s legitimate execution. For example, an adversary may modify the entry point of a binary to point to malicious code patched in by the adversary before resuming normal execution flow. After modifying a binary, an adversary may attempt to Impair Defenses by preventing it from updating (e.g., via the `yum-versionlock` command or `versionlock.list` file in Linux systems that use the yum package manager).
T1562.001 Impair Defenses: Disable or Modify Tools
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems. Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection. Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging. On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot. In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools. For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems. Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.
T1564.001 Hide Artifacts: Hidden Files and Directories
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS). On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name . Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app . On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys. Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
T1620 Reflective Code Loading
Adversaries may reflectively load code into a process in order to conceal the execution of malicious payloads. Reflective loading involves allocating then executing payloads directly within the memory of the process, vice creating a thread or process backed by a file path on disk (e.g., Shared Modules). Reflectively loaded payloads may be compiled binaries, anonymous files (only present in RAM), or just snubs of fileless executable code (ex: position-independent shellcode). For example, the `Assembly.Load()` method executed by PowerShell may be abused to load raw code into the running process. Reflective code injection is very similar to Process Injection except that the “injection” loads code into the processes’ own memory instead of that of a separate process. Reflective loading may evade process-based detections since the execution of the arbitrary code may be masked within a legitimate or otherwise benign process. Reflectively loading payloads directly into memory may also avoid creating files or other artifacts on disk, while also enabling malware to keep these payloads encrypted (or otherwise obfuscated) until execution.
T1622 Debugger Evasion
Adversaries may employ various means to detect and avoid debuggers. Debuggers are typically used by defenders to trace and/or analyze the execution of potential malware payloads. Debugger evasion may include changing behaviors based on the results of the checks for the presence of artifacts indicative of a debugged environment. Similar to Virtualization/Sandbox Evasion, if the adversary detects a debugger, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for debugger artifacts before dropping secondary or additional payloads. Specific checks will vary based on the target and/or adversary, but may involve Native API function calls such as IsDebuggerPresent() and NtQueryInformationProcess(), or manually checking the BeingDebugged flag of the Process Environment Block (PEB). Other checks for debugging artifacts may also seek to enumerate hardware breakpoints, interrupt assembly opcodes, time checks, or measurements if exceptions are raised in the current process (assuming a present debugger would “swallow” or handle the potential error). Adversaries may use the information learned from these debugger checks during automated discovery to shape follow-on behaviors. Debuggers can also be evaded by detaching the process or flooding debug logs with meaningless data via messages produced by looping Native API function calls such as OutputDebugStringW().

List of groups using the malware :


id description

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.