Malware Hildegard

Hildegard is malware that targets misconfigured kubelets for initial access and runs cryptocurrency miner operations. The malware was first observed in January 2021. The TeamTNT activity group is believed to be behind Hildegard.


List of techniques used :


id description
T1014 Rootkit
Adversaries may use rootkits to hide the presence of programs, files, network connections, services, drivers, and other system components. Rootkits are programs that hide the existence of malware by intercepting/hooking and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the user or kernel level in the operating system or lower, to include a hypervisor, Master Boot Record, or System Firmware. Rootkits have been seen for Windows, Linux, and Mac OS X systems.
T1027.002 Obfuscated Files or Information: Software Packing
Adversaries may perform software packing or virtual machine software protection to conceal their code. Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory. Virtual machine software protection translates an executable's original code into a special format that only a special virtual machine can run. A virtual machine is then called to run this code. Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available, but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses.
T1027.013 Obfuscated Files or Information: Encrypted/Encoded File
Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as Software Packing, Steganography, and Embedded Payloads, share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., Deobfuscate/Decode Files or Information) at the time of execution/use. This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files. Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64. The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection. For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a Phishing payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., User Execution). Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until Command and Scripting Interpreter execution.
T1036.004 Masquerading: Masquerade Task or Service
Adversaries may attempt to manipulate the name of a task or service to make it appear legitimate or benign. Tasks/services executed by the Task Scheduler or systemd will typically be given a name and/or description. Windows services will have a service name as well as a display name. Many benign tasks and services exist that have commonly associated names. Adversaries may give tasks or services names that are similar or identical to those of legitimate ones. Tasks or services contain other fields, such as a description, that adversaries may attempt to make appear legitimate.
T1046 Network Service Discovery
Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system. Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well. Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .) to find other systems broadcasting the ssh service.
T1059.004 Command and Scripting Interpreter: Unix Shell
Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution. Unix shells can control every aspect of a system, with certain commands requiring elevated privileges. Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with SSH. Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence.
T1068 Exploitation for Privilege Escalation
Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions. When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods. Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD). Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.
T1070.003 Indicator Removal: Clear Command History
In addition to clearing system logs, an adversary may clear the command history of a compromised account to conceal the actions undertaken during an intrusion. Various command interpreters keep track of the commands users type in their terminal so that users can retrace what they've done. On Linux and macOS, these command histories can be accessed in a few different ways. While logged in, this command history is tracked in a file pointed to by the environment variable HISTFILE. When a user logs off a system, this information is flushed to a file in the user's home directory called ~/.bash_history. The benefit of this is that it allows users to go back to commands they've used before in different sessions. Adversaries may delete their commands from these logs by manually clearing the history (history -c) or deleting the bash history file rm ~/.bash_history. Adversaries may also leverage a Network Device CLI on network devices to clear command history data (clear logging and/or clear history). On Windows hosts, PowerShell has two different command history providers: the built-in history and the command history managed by the PSReadLine module. The built-in history only tracks the commands used in the current session. This command history is not available to other sessions and is deleted when the session ends. The PSReadLine command history tracks the commands used in all PowerShell sessions and writes them to a file ($env:APPDATAMicrosoftWindowsPowerShellPSReadLineConsoleHost_history.txt by default). This history file is available to all sessions and contains all past history since the file is not deleted when the session ends. Adversaries may run the PowerShell command Clear-History to flush the entire command history from a current PowerShell session. This, however, will not delete/flush the ConsoleHost_history.txt file. Adversaries may also delete the ConsoleHost_history.txt file or edit its contents to hide PowerShell commands they have run.
T1070.004 Indicator Removal: File Deletion
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.
T1071 Application Layer Protocol
Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, DNS, or publishing/subscribing. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1102 Web Service
Adversaries may use an existing, legitimate external Web service as a means for relaying data to/from a compromised system. Popular websites, cloud services, and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google, Microsoft, or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection. Use of Web services may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed).
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1133 External Remote Services
Adversaries may leverage external-facing remote services to initially access and/or persist within a network. Remote services such as VPNs, Citrix, and other access mechanisms allow users to connect to internal enterprise network resources from external locations. There are often remote service gateways that manage connections and credential authentication for these services. Services such as Windows Remote Management and VNC can also be used externally. Access to Valid Accounts to use the service is often a requirement, which could be obtained through credential pharming or by obtaining the credentials from users after compromising the enterprise network. Access to remote services may be used as a redundant or persistent access mechanism during an operation. Access may also be gained through an exposed service that doesn’t require authentication. In containerized environments, this may include an exposed Docker API, Kubernetes API server, kubelet, or web application such as the Kubernetes dashboard.
T1136.001 Create Account: Local Account
Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system.
T1140 Deobfuscate/Decode Files or Information
Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file. Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary.
T1219 Remote Access Software
An adversary may use legitimate desktop support and remote access software to establish an interactive command and control channel to target systems within networks. These services, such as `VNC`, `Team Viewer`, `AnyDesk`, `ScreenConnect`, `LogMein`, `AmmyyAdmin`, and other remote monitoring and management (RMM) tools, are commonly used as legitimate technical support software and may be allowed by application control within a target environment. Remote access software may be installed and used post-compromise as an alternate communications channel for redundant access or as a way to establish an interactive remote desktop session with the target system. They may also be used as a component of malware to establish a reverse connection or back-connect to a service or adversary-controlled system. Adversaries may similarly abuse response features included in EDR and other defensive tools that enable remote access. Installation of many remote access software may also include persistence (e.g., the software's installation routine creates a Windows Service). Remote access modules/features may also exist as part of otherwise existing software (e.g., Google Chrome’s Remote Desktop).
T1496.001 Resource Hijacking: Compute Hijacking
Adversaries may leverage the compute resources of co-opted systems to complete resource-intensive tasks, which may impact system and/or hosted service availability. One common purpose for Compute Hijacking is to validate transactions of cryptocurrency networks and earn virtual currency. Adversaries may consume enough system resources to negatively impact and/or cause affected machines to become unresponsive. Servers and cloud-based systems are common targets because of the high potential for available resources, but user endpoint systems may also be compromised and used for Compute Hijacking and cryptocurrency mining. Containerized environments may also be targeted due to the ease of deployment via exposed APIs and the potential for scaling mining activities by deploying or compromising multiple containers within an environment or cluster. Additionally, some cryptocurrency mining malware identify then kill off processes for competing malware to ensure it’s not competing for resources.
T1543.002 Create or Modify System Process: Systemd Service
Adversaries may create or modify systemd services to repeatedly execute malicious payloads as part of persistence. Systemd is a system and service manager commonly used for managing background daemon processes (also known as services) and other system resources. Systemd is the default initialization (init) system on many Linux distributions replacing legacy init systems, including SysVinit and Upstart, while remaining backwards compatible. Systemd utilizes unit configuration files with the `.service` file extension to encode information about a service's process. By default, system level unit files are stored in the `/systemd/system` directory of the root owned directories (`/`). User level unit files are stored in the `/systemd/user` directories of the user owned directories (`$HOME`). Inside the `.service` unit files, the following directives are used to execute commands: * `ExecStart`, `ExecStartPre`, and `ExecStartPost` directives execute when a service is started manually by `systemctl` or on system start if the service is set to automatically start. * `ExecReload` directive executes when a service restarts. * `ExecStop`, `ExecStopPre`, and `ExecStopPost` directives execute when a service is stopped. Adversaries have created new service files, altered the commands a `.service` file’s directive executes, and modified the user directive a `.service` file executes as, which could result in privilege escalation. Adversaries may also place symbolic links in these directories, enabling systemd to find these payloads regardless of where they reside on the filesystem. The .service file’s User directive can be used to run service as a specific user, which could result in privilege escalation based on specific user/group permissions.
T1552.001 Unsecured Credentials: Credentials In Files
Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords. It is possible to extract passwords from backups or saved virtual machines through OS Credential Dumping. Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files. They may also be found as parameters to deployment commands in container logs. In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.
T1552.004 Unsecured Credentials: Private Keys
Adversaries may search for private key certificate files on compromised systems for insecurely stored credentials. Private cryptographic keys and certificates are used for authentication, encryption/decryption, and digital signatures. Common key and certificate file extensions include: .key, .pgp, .gpg, .ppk., .p12, .pem, .pfx, .cer, .p7b, .asc. Adversaries may also look in common key directories, such as ~/.ssh for SSH keys on * nix-based systems or C:\Users\(username)\.ssh\ on Windows. Adversary tools may also search compromised systems for file extensions relating to cryptographic keys and certificates. When a device is registered to Entra ID, a device key and a transport key are generated and used to verify the device’s identity. An adversary with access to the device may be able to export the keys in order to impersonate the device. On network devices, private keys may be exported via Network Device CLI commands such as `crypto pki export`. Some private keys require a password or passphrase for operation, so an adversary may also use Input Capture for keylogging or attempt to Brute Force the passphrase off-line. These private keys can be used to authenticate to Remote Services like SSH or for use in decrypting other collected files such as email.
T1552.005 Unsecured Credentials: Cloud Instance Metadata API
Adversaries may attempt to access the Cloud Instance Metadata API to collect credentials and other sensitive data. Most cloud service providers support a Cloud Instance Metadata API which is a service provided to running virtual instances that allows applications to access information about the running virtual instance. Available information generally includes name, security group, and additional metadata including sensitive data such as credentials and UserData scripts that may contain additional secrets. The Instance Metadata API is provided as a convenience to assist in managing applications and is accessible by anyone who can access the instance. A cloud metadata API has been used in at least one high profile compromise. If adversaries have a presence on the running virtual instance, they may query the Instance Metadata API directly to identify credentials that grant access to additional resources. Additionally, adversaries may exploit a Server-Side Request Forgery (SSRF) vulnerability in a public facing web proxy that allows them to gain access to the sensitive information via a request to the Instance Metadata API. The de facto standard across cloud service providers is to host the Instance Metadata API at http[:]//169.254.169.254.
T1562.001 Impair Defenses: Disable or Modify Tools
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems. Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection. Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging. On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot. In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools. For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems. Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.
T1574.006 Hijack Execution Flow: Dynamic Linker Hijacking
Adversaries may execute their own malicious payloads by hijacking environment variables the dynamic linker uses to load shared libraries. During the execution preparation phase of a program, the dynamic linker loads specified absolute paths of shared libraries from environment variables and files, such as LD_PRELOAD on Linux or DYLD_INSERT_LIBRARIES on macOS. Libraries specified in environment variables are loaded first, taking precedence over system libraries with the same function name. These variables are often used by developers to debug binaries without needing to recompile, deconflict mapped symbols, and implement custom functions without changing the original library. On Linux and macOS, hijacking dynamic linker variables may grant access to the victim process's memory, system/network resources, and possibly elevated privileges. This method may also evade detection from security products since the execution is masked under a legitimate process. Adversaries can set environment variables via the command line using the export command, setenv function, or putenv function. Adversaries can also leverage Dynamic Linker Hijacking to export variables in a shell or set variables programmatically using higher level syntax such Python’s os.environ. On Linux, adversaries may set LD_PRELOAD to point to malicious libraries that match the name of legitimate libraries which are requested by a victim program, causing the operating system to load the adversary's malicious code upon execution of the victim program. LD_PRELOAD can be set via the environment variable or /etc/ld.so.preload file. Libraries specified by LD_PRELOAD are loaded and mapped into memory by dlopen() and mmap() respectively. On macOS this behavior is conceptually the same as on Linux, differing only in how the macOS dynamic libraries (dyld) is implemented at a lower level. Adversaries can set the DYLD_INSERT_LIBRARIES environment variable to point to malicious libraries containing names of legitimate libraries or functions requested by a victim program.
T1609 Container Administration Command
Adversaries may abuse a container administration service to execute commands within a container. A container administration service such as the Docker daemon, the Kubernetes API server, or the kubelet may allow remote management of containers within an environment. In Docker, adversaries may specify an entrypoint during container deployment that executes a script or command, or they may use a command such as docker exec to execute a command within a running container. In Kubernetes, if an adversary has sufficient permissions, they may gain remote execution in a container in the cluster via interaction with the Kubernetes API server, the kubelet, or by running a command such as kubectl exec.
T1611 Escape to Host
Adversaries may break out of a container to gain access to the underlying host. This can allow an adversary access to other containerized resources from the host level or to the host itself. In principle, containerized resources should provide a clear separation of application functionality and be isolated from the host environment. There are multiple ways an adversary may escape to a host environment. Examples include creating a container configured to mount the host’s filesystem using the bind parameter, which allows the adversary to drop payloads and execute control utilities such as cron on the host; utilizing a privileged container to run commands or load a malicious kernel module on the underlying host; or abusing system calls such as `unshare` and `keyctl` to escalate privileges and steal secrets. Additionally, an adversary may be able to exploit a compromised container with a mounted container management socket, such as `docker.sock`, to break out of the container via a Container Administration Command. Adversaries may also escape via Exploitation for Privilege Escalation, such as exploiting vulnerabilities in global symbolic links in order to access the root directory of a host machine. Gaining access to the host may provide the adversary with the opportunity to achieve follow-on objectives, such as establishing persistence, moving laterally within the environment, accessing other containers running on the host, or setting up a command and control channel on the host.
T1613 Container and Resource Discovery
Adversaries may attempt to discover containers and other resources that are available within a containers environment. Other resources may include images, deployments, pods, nodes, and other information such as the status of a cluster. These resources can be viewed within web applications such as the Kubernetes dashboard or can be queried via the Docker and Kubernetes APIs. In Docker, logs may leak information about the environment, such as the environment’s configuration, which services are available, and what cloud provider the victim may be utilizing. The discovery of these resources may inform an adversary’s next steps in the environment, such as how to perform lateral movement and which methods to utilize for execution.

List of groups using the malware :


id description
G0139 TeamTNT
TeamTNT is a threat group that has primarily targeted cloud and containerized environments. The group as been active since at least October 2019 and has mainly focused its efforts on leveraging cloud and container resources to deploy cryptocurrency miners in victim environments.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.