Malware SMOKEDHAM

SMOKEDHAM is a Powershell-based .NET backdoor that was first reported in May 2021; it has been used by at least one ransomware-as-a-service affiliate.


List of techniques used :


id description
T1027.009 Obfuscated Files or Information: Embedded Payloads
Adversaries may embed payloads within other files to conceal malicious content from defenses. Otherwise seemingly benign files (such as scripts and executables) may be abused to carry and obfuscate malicious payloads and content. In some cases, embedded payloads may also enable adversaries to Subvert Trust Controls by not impacting execution controls such as digital signatures and notarization tickets. Adversaries may embed payloads in various file formats to hide payloads. This is similar to Steganography, though does not involve weaving malicious content into specific bytes and patterns related to legitimate digital media formats. For example, adversaries have been observed embedding payloads within or as an overlay of an otherwise benign binary. Adversaries have also been observed nesting payloads (such as executables and run-only scripts) inside a file of the same format. Embedded content may also be used as Process Injection payloads used to infect benign system processes. These embedded then injected payloads may be used as part of the modules of malware designed to provide specific features such as encrypting C2 communications in support of an orchestrator module. For example, an embedded module may be injected into default browsers, allowing adversaries to then communicate via the network.
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1056.001 Input Capture: Keylogging
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems. Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes. Some methods include: * Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data. * Reading raw keystroke data from the hardware buffer. * Windows Registry modifications. * Custom drivers. * Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.
T1059.001 Command and Scripting Interpreter: PowerShell
Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1087.001 Account Discovery: Local Account
Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior. Commands such as net user and net localgroup of the Net utility and id and groups on macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd file. On macOS the dscl . list /Users command can be used to enumerate local accounts.
T1090.004 Proxy: Domain Fronting
Adversaries may take advantage of routing schemes in Content Delivery Networks (CDNs) and other services which host multiple domains to obfuscate the intended destination of HTTPS traffic or traffic tunneled through HTTPS. Domain fronting involves using different domain names in the SNI field of the TLS header and the Host field of the HTTP header. If both domains are served from the same CDN, then the CDN may route to the address specified in the HTTP header after unwrapping the TLS header. A variation of the the technique, "domainless" fronting, utilizes a SNI field that is left blank; this may allow the fronting to work even when the CDN attempts to validate that the SNI and HTTP Host fields match (if the blank SNI fields are ignored). For example, if domain-x and domain-y are customers of the same CDN, it is possible to place domain-x in the TLS header and domain-y in the HTTP header. Traffic will appear to be going to domain-x, however the CDN may route it to domain-y.
T1098.007 Account Manipulation: Additional Local or Domain Groups
An adversary may add additional local or domain groups to an adversary-controlled account to maintain persistent access to a system or domain. On Windows, accounts may use the `net localgroup` and `net group` commands to add existing users to local and domain groups. On Linux, adversaries may use the `usermod` command for the same purpose. For example, accounts may be added to the local administrators group on Windows devices to maintain elevated privileges. They may also be added to the Remote Desktop Users group, which allows them to leverage Remote Desktop Protocol to log into the endpoints in the future. On Linux, accounts may be added to the sudoers group, allowing them to persistently leverage Sudo and Sudo Caching for elevated privileges. In Windows environments, machine accounts may also be added to domain groups. This allows the local SYSTEM account to gain privileges on the domain.
T1102 Web Service
Adversaries may use an existing, legitimate external Web service as a means for relaying data to/from a compromised system. Popular websites, cloud services, and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google, Microsoft, or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection. Use of Web services may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed).
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1112 Modify Registry
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. Often Valid Accounts are required, along with access to the remote system's SMB/Windows Admin Shares for RPC communication.
T1113 Screen Capture
Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.
T1132.001 Data Encoding: Standard Encoding
Adversaries may encode data with a standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system that adheres to existing protocol specifications. Common data encoding schemes include ASCII, Unicode, hexadecimal, Base64, and MIME. Some data encoding systems may also result in data compression, such as gzip.
T1136.001 Create Account: Local Account
Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service. For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility. Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system.
T1204.001 User Execution: Malicious Link
An adversary may rely upon a user clicking a malicious link in order to gain execution. Users may be subjected to social engineering to get them to click on a link that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Link. Clicking on a link may also lead to other execution techniques such as exploitation of a browser or application vulnerability via Exploitation for Client Execution. Links may also lead users to download files that require execution via Malicious File.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
T1564.002 Hide Artifacts: Hidden Users
Adversaries may use hidden users to hide the presence of user accounts they create or modify. Administrators may want to hide users when there are many user accounts on a given system or if they want to hide their administrative or other management accounts from other users. In macOS, adversaries can create or modify a user to be hidden through manipulating plist files, folder attributes, and user attributes. To prevent a user from being shown on the login screen and in System Preferences, adversaries can set the userID to be under 500 and set the key value Hide500Users to TRUE in the /Library/Preferences/com.apple.loginwindow plist file. Every user has a userID associated with it. When the Hide500Users key value is set to TRUE, users with a userID under 500 do not appear on the login screen and in System Preferences. Using the command line, adversaries can use the dscl utility to create hidden user accounts by setting the IsHidden attribute to 1. Adversaries can also hide a user’s home folder by changing the chflags to hidden. Adversaries may similarly hide user accounts in Windows. Adversaries can set the HKLMSOFTWAREMicrosoftWindows NTCurrentVersionWinlogonSpecialAccountsUserList Registry key value to 0 for a specific user to prevent that user from being listed on the logon screen. On Linux systems, adversaries may hide user accounts from the login screen, also referred to as the greeter. The method an adversary may use depends on which Display Manager the distribution is currently using. For example, on an Ubuntu system using the GNOME Display Manger (GDM), accounts may be hidden from the greeter using the gsettings command (ex: sudo -u gdm gsettings set org.gnome.login-screen disable-user-list true). Display Managers are not anchored to specific distributions and may be changed by a user or adversary.
T1573.001 Encrypted Channel: Symmetric Cryptography
Adversaries may employ a known symmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Symmetric encryption algorithms use the same key for plaintext encryption and ciphertext decryption. Common symmetric encryption algorithms include AES, DES, 3DES, Blowfish, and RC4.
T1598.003 Phishing for Information: Spearphishing Link
Adversaries may send spearphishing messages with a malicious link to elicit sensitive information that can be used during targeting. Spearphishing for information is an attempt to trick targets into divulging information, frequently credentials or other actionable information. Spearphishing for information frequently involves social engineering techniques, such as posing as a source with a reason to collect information (ex: Establish Accounts or Compromise Accounts) and/or sending multiple, seemingly urgent messages. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, the malicious emails contain links generally accompanied by social engineering text to coax the user to actively click or copy and paste a URL into a browser. The given website may be a clone of a legitimate site (such as an online or corporate login portal) or may closely resemble a legitimate site in appearance and have a URL containing elements from the real site. URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`. Adversaries may also embed “tracking pixels”, "web bugs", or "web beacons" within phishing messages to verify the receipt of an email, while also potentially profiling and tracking victim information such as IP address. These mechanisms often appear as small images (typically one pixel in size) or otherwise obfuscated objects and are typically delivered as HTML code containing a link to a remote server. Adversaries may also be able to spoof a complete website using what is known as a "browser-in-the-browser" (BitB) attack. By generating a fake browser popup window with an HTML-based address bar that appears to contain a legitimate URL (such as an authentication portal), they may be able to prompt users to enter their credentials while bypassing typical URL verification methods. Adversaries can use phishing kits such as `EvilProxy` and `Evilginx2` to perform adversary-in-the-middle phishing by proxying the connection between the victim and the legitimate website. On a successful login, the victim is redirected to the legitimate website, while the adversary captures their session cookie (i.e., Steal Web Session Cookie) in addition to their username and password. This may enable the adversary to then bypass MFA via Web Session Cookie. Adversaries may also send a malicious link in the form of Quick Response (QR) Codes (also known as “quishing”). These links may direct a victim to a credential phishing page. By using a QR code, the URL may not be exposed in the email and may thus go undetected by most automated email security scans. These QR codes may be scanned by or delivered directly to a user’s mobile device (i.e., Phishing), which may be less secure in several relevant ways. For example, mobile users may not be able to notice minor differences between genuine and credential harvesting websites due to mobile’s smaller form factor. From the fake website, information is gathered in web forms and sent to the adversary. Adversaries may also use information from previous reconnaissance efforts (ex: Search Open Websites/Domains or Search Victim-Owned Websites) to craft persuasive and believable lures.

List of groups using the malware :


id description

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.