Malware Small Sieve

Small Sieve is a Telegram Bot API-based Python backdoor that has been distributed using a Nullsoft Scriptable Install System (NSIS) Installer; it has been used by MuddyWater since at least January 2022. Security researchers have also noted Small Sieve's use by UNC3313, which may be associated with MuddyWater.


List of techniques used :


id description
T1016 System Network Configuration Discovery
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route. Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface). Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
T1027 Obfuscated Files or Information
Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses. Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user's action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. Adversaries may also use compressed or archived scripts, such as JavaScript. Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms.
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1036.005 Masquerading: Match Legitimate Name or Location
Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic.
T1059.003 Command and Scripting Interpreter: Windows Command Shell
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH. Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.
T1059.006 Command and Scripting Interpreter: Python
Adversaries may abuse Python commands and scripts for execution. Python is a very popular scripting/programming language, with capabilities to perform many functions. Python can be executed interactively from the command-line (via the python.exe interpreter) or via scripts (.py) that can be written and distributed to different systems. Python code can also be compiled into binary executables. Python comes with many built-in packages to interact with the underlying system, such as file operations and device I/O. Adversaries can use these libraries to download and execute commands or other scripts as well as perform various malicious behaviors.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1102.002 Web Service: Bidirectional Communication
Adversaries may use an existing, legitimate external Web service as a means for sending commands to and receiving output from a compromised system over the Web service channel. Compromised systems may leverage popular websites and social media to host command and control (C2) instructions. Those infected systems can then send the output from those commands back over that Web service channel. The return traffic may occur in a variety of ways, depending on the Web service being utilized. For example, the return traffic may take the form of the compromised system posting a comment on a forum, issuing a pull request to development project, updating a document hosted on a Web service, or by sending a Tweet. Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.
T1105 Ingress Tool Transfer
Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer). On Windows, adversaries may use various utilities to download tools, such as `copy`, `finger`, certutil, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as `curl`, `scp`, `sftp`, `tftp`, `rsync`, `finger`, and `wget`. Adversaries may also abuse installers and package managers, such as `yum` or `winget`, to download tools to victim hosts. Adversaries have also abused file application features, such as the Windows `search-ms` protocol handler, to deliver malicious files to victims through remote file searches invoked by User Execution (typically after interacting with Phishing lures). Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system. In some cases, adversaries may be able to leverage services that sync between a web-based and an on-premises client, such as Dropbox or OneDrive, to transfer files onto victim systems. For example, by compromising a cloud account and logging into the service's web portal, an adversary may be able to trigger an automatic syncing process that transfers the file onto the victim's machine.
T1132.002 Data Encoding: Non-Standard Encoding
Adversaries may encode data with a non-standard data encoding system to make the content of command and control traffic more difficult to detect. Command and control (C2) information can be encoded using a non-standard data encoding system that diverges from existing protocol specifications. Non-standard data encoding schemes may be based on or related to standard data encoding schemes, such as a modified Base64 encoding for the message body of an HTTP request.
T1480 Execution Guardrails
Adversaries may use execution guardrails to constrain execution or actions based on adversary supplied and environment specific conditions that are expected to be present on the target. Guardrails ensure that a payload only executes against an intended target and reduces collateral damage from an adversary’s campaign. Values an adversary can provide about a target system or environment to use as guardrails may include specific network share names, attached physical devices, files, joined Active Directory (AD) domains, and local/external IP addresses. Guardrails can be used to prevent exposure of capabilities in environments that are not intended to be compromised or operated within. This use of guardrails is distinct from typical Virtualization/Sandbox Evasion. While use of Virtualization/Sandbox Evasion may involve checking for known sandbox values and continuing with execution only if there is no match, the use of guardrails will involve checking for an expected target-specific value and only continuing with execution if there is such a match. Adversaries may identify and block certain user-agents to evade defenses and narrow the scope of their attack to victims and platforms on which it will be most effective. A user-agent self-identifies data such as a user's software application, operating system, vendor, and version. Adversaries may check user-agents for operating system identification and then only serve malware for the exploitable software while ignoring all other operating systems.
T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in. These programs will be executed under the context of the user and will have the account's associated permissions level. The following run keys are created by default on Windows systems: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce Run keys may exist under multiple hives. The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency. For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp. The following Registry keys can be used to set startup folder items for persistence: * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders * HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders The following Registry keys can control automatic startup of services during boot: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices Using policy settings to specify startup programs creates corresponding values in either of two Registry keys: * HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun * HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user. By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot. Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
T1573.002 Encrypted Channel: Asymmetric Cryptography
Adversaries may employ a known asymmetric encryption algorithm to conceal command and control traffic rather than relying on any inherent protections provided by a communication protocol. Asymmetric cryptography, also known as public key cryptography, uses a keypair per party: one public that can be freely distributed, and one private. Due to how the keys are generated, the sender encrypts data with the receiver’s public key and the receiver decrypts the data with their private key. This ensures that only the intended recipient can read the encrypted data. Common public key encryption algorithms include RSA and ElGamal. For efficiency, many protocols (including SSL/TLS) use symmetric cryptography once a connection is established, but use asymmetric cryptography to establish or transmit a key. As such, these protocols are classified as Asymmetric Cryptography.

List of groups using the malware :


id description
G0069 MuddyWater
MuddyWater is a cyber espionage group assessed to be a subordinate element within Iran's Ministry of Intelligence and Security (MOIS). Since at least 2017, MuddyWater has targeted a range of government and private organizations across sectors, including telecommunications, local government, defense, and oil and natural gas organizations, in the Middle East, Asia, Africa, Europe, and North America.

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.