Malware Cuckoo Stealer

Cuckoo Stealer is a macOS malware with characteristics of spyware and an infostealer that has been in use since at least 2024. Cuckoo Stealer is a universal Mach-O binary that can run on Intel or ARM-based Macs and has been spread through trojanized versions of various potentially unwanted programs or PUP's such as converters, cleaners, and uninstallers.


List of techniques used :


id description
T1027.008 Obfuscated Files or Information: Stripped Payloads
Adversaries may attempt to make a payload difficult to analyze by removing symbols, strings, and other human readable information. Scripts and executables may contain variables names and other strings that help developers document code functionality. Symbols are often created by an operating system’s `linker` when executable payloads are compiled. Reverse engineers use these symbols and strings to analyze code and to identify functionality in payloads. Adversaries may use stripped payloads in order to make malware analysis more difficult. For example, compilers and other tools may provide features to remove or obfuscate strings and symbols. Adversaries have also used stripped payload formats, such as run-only AppleScripts, a compiled and stripped version of AppleScript, to evade detection and analysis. The lack of human-readable information may directly hinder detection and analysis of payloads.
T1027.013 Obfuscated Files or Information: Encrypted/Encoded File
Adversaries may encrypt or encode files to obfuscate strings, bytes, and other specific patterns to impede detection. Encrypting and/or encoding file content aims to conceal malicious artifacts within a file used in an intrusion. Many other techniques, such as Software Packing, Steganography, and Embedded Payloads, share this same broad objective. Encrypting and/or encoding files could lead to a lapse in detection of static signatures, only for this malicious content to be revealed (i.e., Deobfuscate/Decode Files or Information) at the time of execution/use. This type of file obfuscation can be applied to many file artifacts present on victim hosts, such as malware log/configuration and payload files. Files can be encrypted with a hardcoded or user-supplied key, as well as otherwise obfuscated using standard encoding/compression schemes such as Base64. The entire content of a file may be obfuscated, or just specific functions or values (such as C2 addresses). Encryption and encoding may also be applied in redundant layers for additional protection. For example, adversaries may abuse password-protected Word documents or self-extracting (SFX) archives as a method of encrypting/encoding a file such as a Phishing payload. These files typically function by attaching the intended archived content to a decompressor stub that is executed when the file is invoked (e.g., User Execution). Adversaries may also abuse file-specific as well as custom encoding schemes. For example, Byte Order Mark (BOM) headers in text files may be abused to manipulate and obfuscate file content until Command and Scripting Interpreter execution.
T1033 System Owner/User Discovery
Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information. On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.
T1036.005 Masquerading: Match Legitimate Name or Location
Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous. Adversaries may also use the same icon of the file they are trying to mimic.
T1041 Exfiltration Over C2 Channel
Adversaries may steal data by exfiltrating it over an existing command and control channel. Stolen data is encoded into the normal communications channel using the same protocol as command and control communications.
T1056.002 Input Capture: GUI Input Capture
Adversaries may mimic common operating system GUI components to prompt users for credentials with a seemingly legitimate prompt. When programs are executed that need additional privileges than are present in the current user context, it is common for the operating system to prompt the user for proper credentials to authorize the elevated privileges for the task (ex: Bypass User Account Control). Adversaries may mimic this functionality to prompt users for credentials with a seemingly legitimate prompt for a number of reasons that mimic normal usage, such as a fake installer requiring additional access or a fake malware removal suite. This type of prompt can be used to collect credentials via various languages such as AppleScript and PowerShell. On Linux systems adversaries may launch dialog boxes prompting users for credentials from malicious shell scripts or the command line (i.e. Unix Shell). Adversaries may also mimic common software authentication requests, such as those from browsers or email clients. This may also be paired with user activity monitoring (i.e., Browser Information Discovery and/or Application Window Discovery) to spoof prompts when users are naturally accessing sensitive sites/data.
T1057 Process Discovery
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Administrator or otherwise elevated access may provide better process details. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via `/proc`. On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.
T1059.002 Command and Scripting Interpreter: AppleScript
Adversaries may abuse AppleScript for execution. AppleScript is a macOS scripting language designed to control applications and parts of the OS via inter-application messages called AppleEvents. These AppleEvent messages can be sent independently or easily scripted with AppleScript. These events can locate open windows, send keystrokes, and interact with almost any open application locally or remotely. Scripts can be run from the command-line via osascript /path/to/script or osascript -e "script here". Aside from the command line, scripts can be executed in numerous ways including Mail rules, Calendar.app alarms, and Automator workflows. AppleScripts can also be executed as plain text shell scripts by adding #!/usr/bin/osascript to the start of the script file. AppleScripts do not need to call osascript to execute. However, they may be executed from within mach-O binaries by using the macOS Native APIs NSAppleScript or OSAScript, both of which execute code independent of the /usr/bin/osascript command line utility. Adversaries may abuse AppleScript to execute various behaviors, such as interacting with an open SSH connection, moving to remote machines, and even presenting users with fake dialog boxes. These events cannot start applications remotely (they can start them locally), but they can interact with applications if they're already running remotely. On macOS 10.10 Yosemite and higher, AppleScript has the ability to execute Native APIs, which otherwise would require compilation and execution in a mach-O binary file format. Since this is a scripting language, it can be used to launch more common techniques as well such as a reverse shell via Python.
T1059.004 Command and Scripting Interpreter: Unix Shell
Adversaries may abuse Unix shell commands and scripts for execution. Unix shells are the primary command prompt on Linux and macOS systems, though many variations of the Unix shell exist (e.g. sh, bash, zsh, etc.) depending on the specific OS or distribution. Unix shells can control every aspect of a system, with certain commands requiring elevated privileges. Unix shells also support scripts that enable sequential execution of commands as well as other typical programming operations such as conditionals and loops. Common uses of shell scripts include long or repetitive tasks, or the need to run the same set of commands on multiple systems. Adversaries may abuse Unix shells to execute various commands or payloads. Interactive shells may be accessed through command and control channels or during lateral movement such as with SSH. Adversaries may also leverage shell scripts to deliver and execute multiple commands on victims or as part of payloads used for persistence.
T1071.001 Application Layer Protocol: Web Protocols
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server. Protocols such as HTTP/S and WebSocket that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
T1074.001 Data Staged: Local Data Staging
Adversaries may stage collected data in a central location or directory on the local system prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as Archive Collected Data. Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location. Adversaries may also stage collected data in various available formats/locations of a system, including local storage databases/repositories or the Windows Registry.
T1082 System Information Discovery
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version). System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment. Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.
T1083 File and Directory Discovery
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram). Some files and directories may require elevated or specific user permissions to access.
T1095 Non-Application Layer Protocol
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL). ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts. However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
T1113 Screen Capture
Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.
T1140 Deobfuscate/Decode Files or Information
Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system. One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file. Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary.
T1217 Browser Information Discovery
Adversaries may enumerate information about browsers to learn more about compromised environments. Data saved by browsers (such as bookmarks, accounts, and browsing history) may reveal a variety of personal information about users (e.g., banking sites, relationships/interests, social media, etc.) as well as details about internal network resources such as servers, tools/dashboards, or other related infrastructure. Browser information may also highlight additional targets after an adversary has access to valid credentials, especially Credentials In Files associated with logins cached by a browser. Specific storage locations vary based on platform and/or application, but browser information is typically stored in local files and databases (e.g., `%APPDATA%/Google/Chrome`).
T1518 Software Discovery
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Such software may be deployed widely across the environment for configuration management or security reasons, such as Software Deployment Tools, and may allow adversaries broad access to infect devices or move laterally. Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.
T1543.001 Create or Modify System Process: Launch Agent
Adversaries may create or modify launch agents to repeatedly execute malicious payloads as part of persistence. When a user logs in, a per-user launchd process is started which loads the parameters for each launch-on-demand user agent from the property list (.plist) file found in /System/Library/LaunchAgents, /Library/LaunchAgents, and ~/Library/LaunchAgents. Property list files use the Label, ProgramArguments , and RunAtLoad keys to identify the Launch Agent's name, executable location, and execution time. Launch Agents are often installed to perform updates to programs, launch user specified programs at login, or to conduct other developer tasks. Launch Agents can also be executed using the Launchctl command. Adversaries may install a new Launch Agent that executes at login by placing a .plist file into the appropriate folders with the RunAtLoad or KeepAlive keys set to true. The Launch Agent name may be disguised by using a name from the related operating system or benign software. Launch Agents are created with user level privileges and execute with user level permissions.
T1553.001 Subvert Trust Controls: Gatekeeper Bypass
Adversaries may modify file attributes and subvert Gatekeeper functionality to evade user prompts and execute untrusted programs. Gatekeeper is a set of technologies that act as layer of Apple’s security model to ensure only trusted applications are executed on a host. Gatekeeper was built on top of File Quarantine in Snow Leopard (10.6, 2009) and has grown to include Code Signing, security policy compliance, Notarization, and more. Gatekeeper also treats applications running for the first time differently than reopened applications. Based on an opt-in system, when files are downloaded an extended attribute (xattr) called `com.apple.quarantine` (also known as a quarantine flag) can be set on the file by the application performing the download. Launch Services opens the application in a suspended state. For first run applications with the quarantine flag set, Gatekeeper executes the following functions: 1. Checks extended attribute – Gatekeeper checks for the quarantine flag, then provides an alert prompt to the user to allow or deny execution. 2. Checks System Policies - Gatekeeper checks the system security policy, allowing execution of apps downloaded from either just the App Store or the App Store and identified developers. 3. Code Signing – Gatekeeper checks for a valid code signature from an Apple Developer ID. 4. Notarization - Using the `api.apple-cloudkit.com` API, Gatekeeper reaches out to Apple servers to verify or pull down the notarization ticket and ensure the ticket is not revoked. Users can override notarization, which will result in a prompt of executing an “unauthorized app” and the security policy will be modified. Adversaries can subvert one or multiple security controls within Gatekeeper checks through logic errors (e.g. Exploitation for Defense Evasion), unchecked file types, and external libraries. For example, prior to macOS 13 Ventura, code signing and notarization checks were only conducted on first launch, allowing adversaries to write malicious executables to previously opened applications in order to bypass Gatekeeper security checks. Applications and files loaded onto the system from a USB flash drive, optical disk, external hard drive, from a drive shared over the local network, or using the curl command may not set the quarantine flag. Additionally, it is possible to avoid setting the quarantine flag using Drive-by Compromise.
T1555.001 Credentials from Password Stores: Keychain
Adversaries may acquire credentials from Keychain. Keychain (or Keychain Services) is the macOS credential management system that stores account names, passwords, private keys, certificates, sensitive application data, payment data, and secure notes. There are three types of Keychains: Login Keychain, System Keychain, and Local Items (iCloud) Keychain. The default Keychain is the Login Keychain, which stores user passwords and information. The System Keychain stores items accessed by the operating system, such as items shared among users on a host. The Local Items (iCloud) Keychain is used for items synced with Apple’s iCloud service. Keychains can be viewed and edited through the Keychain Access application or using the command-line utility security. Keychain files are located in ~/Library/Keychains/, /Library/Keychains/, and /Network/Library/Keychains/. Adversaries may gather user credentials from Keychain storage/memory. For example, the command security dump-keychain –d will dump all Login Keychain credentials from ~/Library/Keychains/login.keychain-db. Adversaries may also directly read Login Keychain credentials from the ~/Library/Keychains/login.keychain file. Both methods require a password, where the default password for the Login Keychain is the current user’s password to login to the macOS host.
T1564.001 Hide Artifacts: Hidden Files and Directories
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS). On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name . Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app . On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys. Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
T1569.001 System Services: Launchctl
Adversaries may abuse launchctl to execute commands or programs. Launchctl interfaces with launchd, the service management framework for macOS. Launchctl supports taking subcommands on the command-line, interactively, or even redirected from standard input. Adversaries use launchctl to execute commands and programs as Launch Agents or Launch Daemons. Common subcommands include: launchctl load,launchctl unload, and launchctl start. Adversaries can use scripts or manually run the commands launchctl load -w "%s/Library/LaunchAgents/%s" or /bin/launchctl load to execute Launch Agents or Launch Daemons.
T1614 System Location Discovery
Adversaries may gather information in an attempt to calculate the geographical location of a victim host. Adversaries may use the information from System Location Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions. Adversaries may attempt to infer the location of a system using various system checks, such as time zone, keyboard layout, and/or language settings. Windows API functions such as GetLocaleInfoW can also be used to determine the locale of the host. In cloud environments, an instance's availability zone may also be discovered by accessing the instance metadata service from the instance. Adversaries may also attempt to infer the location of a victim host using IP addressing, such as via online geolocation IP-lookup services.
T1614.001 System Location Discovery: System Language Discovery
Adversaries may attempt to gather information about the system language of a victim in order to infer the geographical location of that host. This information may be used to shape follow-on behaviors, including whether the adversary infects the target and/or attempts specific actions. This decision may be employed by malware developers and operators to reduce their risk of attracting the attention of specific law enforcement agencies or prosecution/scrutiny from other entities. There are various sources of data an adversary could use to infer system language, such as system defaults and keyboard layouts. Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Query Registry and calls to Native API functions. For example, on a Windows system adversaries may attempt to infer the language of a system by querying the registry key HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlNlsLanguage or parsing the outputs of Windows API functions GetUserDefaultUILanguage, GetSystemDefaultUILanguage, GetKeyboardLayoutList and GetUserDefaultLangID. On a macOS or Linux system, adversaries may query locale to retrieve the value of the $LANG environment variable.
T1647 Plist File Modification
Adversaries may modify property list files (plist files) to enable other malicious activity, while also potentially evading and bypassing system defenses. macOS applications use plist files, such as the info.plist file, to store properties and configuration settings that inform the operating system how to handle the application at runtime. Plist files are structured metadata in key-value pairs formatted in XML based on Apple's Core Foundation DTD. Plist files can be saved in text or binary format. Adversaries can modify key-value pairs in plist files to influence system behaviors, such as hiding the execution of an application (i.e. Hidden Window) or running additional commands for persistence (ex: Launch Agent/Launch Daemon or Re-opened Applications). For example, adversaries can add a malicious application path to the `~/Library/Preferences/com.apple.dock.plist` file, which controls apps that appear in the Dock. Adversaries can also modify the LSUIElement key in an application’s info.plist file to run the app in the background. Adversaries can also insert key-value pairs to insert environment variables, such as LSEnvironment, to enable persistence via Dynamic Linker Hijacking.

List of groups using the malware :


id description

© 2022 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.